
Cyclic 4-tensor rotations underly the training of a GPT-style encoder

The basic architecture of GPT-style encoders nowadays involves a
simple type of ‘neural’ step, composing affine transformations with
the projection on the first ‘octant’ of a based vector-space, together
with an attention step. The attention step is described in the paper
“Attention is all you need,” and seems to occur in earlier papers.

Training invovles ‘gradient descent,’ and can be simplified conceptu-
aly, and coded easily, by using the principle that instead we identify
the Euler field with a differential one-form, via the Euclidean met-
ric, and pull the form back to the weight space. We will give an
easy calculation of the training step using rotations of cyclic matrix
words.

Re-interpreting the form there as a flow again requires invoking the
Euclidean metric on the weight-space, and it is my belief that various
normalization steps, perhaps even the use of softmax in the attention
step, could be combined and generalized if one allowed a Riemannian
metric on the weight space.

We start with a vector-space V containing a finite set S, we think
of the elements of S as words, or, sometimes, words together with
information conveying their position in the sequence of words in a
sentence.

In terms of particular coordinate functions on V, a well-used position
encoding could add to each coordinate the x or y position of the
minute, second, or hour hand of a progressing clock, for example.
I’d rather be sure that the sum were direct, to avoid interference
between word meanings and the position encodings.

If we write V = RN then a sequence of n elements of V corresonds
to an n×N matrix X, and the first attention step, in the case of a
single attention head, is determined by three matrices, which could
be learned, Q,K, V by sending X to ( 1√

n
XQKtX t)aXV. We have

taken to writing operators on the right, and a known as sofmax is
the operation here of exponentiating the the entries of 1√

n
XQKtX t

and dividing each element by the sum of the elements in its row.
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The entries of this matrix are 1√
n
times the Euclidean inner products

of the Qx with Ky when x, y rows of X. The softmax step makes
many entries near zero, when it is not one imagines somehow that
x ‘pays attention’ to y.

The neural step is just an affine transformation composed with pro-
jection on the first ‘octant,’ and another affine transformation. Since
we have only a single attention head, the affine transformation is
general if it is merely addition of a (the same) vector b1 to each

row, hence addition of C =


1
1
...
1

 b1 to the matrix, as any linear

transformation can be subsumed in V, and then we apply ( )m, the
truncation which acts at each point by a diagonal matrix with entries
of 0 and 1, and then application of another affine transformation, so
the whole encoder sends X to

((
1√
n
XQKtX t)XV + Cb1)W + Cb2 (1)

with Q,K, V matrices and b1, b2 row vectors.

We shall ignore the concept of adding X to this to provide a ‘short-
cut’ and also the concept of normalizing the weights; the latter no-
tion would be better understood if we were to use more general
metrics.

Let’s abbreviate the tuple (Q,K, V,W, b1, b2) by just the letter w
and the set of all such tuples by the symbol W , an abuse of notation
since we also use it for the name of a matrix. If we are trying to
match a particular function of matrices f : V n → V n, or more
correctly Sn → V n, in the first instance with just this one layer
of encoding, for each fixed s ∈ S we write the negative Euler flow
−
∑

xi∂/∂xi with xi Euclidean coordinates on V and we identify
this using Euclidean duality with the one-form

∑
xidxi. We pull

this back along the error map

E : W → V

w 7→ f(s)− F (w, s)
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with s fixed, and this gives us a differential 1-form on W.

There is a very conveient type of algebra which will let us do this.
Starting with the query matrix Q, if the entries are considered to
be variables qij we write dQ for the matrix of one-forms with entries
dqij, and we do the same for K,V etcetera.

With E = f(s) − F (w, s), we use the same convention for E, and
pullback of our one-form along the error map toW is merely−E∗dE
where the asterisk ∗ just means we multiply correspnding entries of
E with corresponding entries of dE.

If we wanted to write this in terms of the action of matrices upon
matrices of forms, it would be EtdE.

Note that dE is actually an element of V n tensor with its own cotan-
gent space, so it is a ‘tensor’ which would be called ‘rank four’ in
the language of tensorflow software.

But without using tensorflow we can calculate the compopnent of
dQ, dK, dV, dQ, db1, db2 in this tensor. That is to say, we can write
it as a matrix linear combination of these basic parts.

When we substitute (1) in the formula for E and expand using
the distributive rule, we have a sum of matrix products. In each
such product involving any of our weight matrices matrix X, we
can collect the preceding and following terms to obtain a three-part
expression AXB, and now we have interpreting A,B as constant

E ∗ d(AXB) = trace(Etd(AXB)) = trace(EtA dXB)

The word trace here refers to the sum of the diagonal entries in
a square matrix of one-forms. Nevertheless, just as for ordinary
matrices, Without affecting this notion of trace we may cyclically
rotate until dX is at the end, giving

trace(BEtAdX) = (AtEBt) ∗ dX

and now, the entries of AtEBt are the coefficients of the correspond-
ing entries of dX in E∗d(AXB). Whenever we have a sum of matrix
words, we can use this easy principle to find the matrix of coefficients
of any variable matrices in any of the words.
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Let us state this as a theorem.

Theorem. Each matrix word in the expression for the error E when
written in the form AXB where A is the part of the word before
X and B is the part afterwards, contributes, to the pullback of the
one-form corresponding to minus Euler derivation, precisely the sum
of the differential one-forms which sit as the diagonal entries of the
cyclically rotated ‘rank 4’ tensor −BEtA dX

This applies when one of the matrices in the word represents pro-
jection on the octant, ()m because in a neighbourhood of any point
(except if it is in a set of measure zero), we can interpretm as merely
a fixed diagonal matrix with entries of 0 and 1.

To have enough tools to finish the calculation, I only need to explain
how to deduce d(Xa) from dX when ( )a is softmax.

We have

d(Xa)ij) =
1

(exi1 + ...+ exin)2

∑
k

exij+xik

(dxij − dxik)

Then using the star operation of multiplying like terms and adding,
for any constant matrix A we have

(A∗d(Xa)) =
∑
ij

aij(d(Xa)ij) =
∑
i

1

(exi1 + ...+ exin)2

∑
jk

exij+xikaijdxij−aijdxik

The exponential coefficient being symmetric, we can interchange j
and k appropriately

A∗d(Xa) =
∑
ij

aij(d(Xa)ij) =
∑
i

1

(exi1 + ...+ exin)2

∑
jk

exij+xik(aij−aik)dxij

=
∑
ij

[

∑
k e

xij+xik(aij − aik)∑
k e

xik
] · dxij

and we have calculated the coefficient of xij and the form is A′∗dX =
AtdX with A′ the matrix whose entries are as given in the square
brackets.

Note that the dot is more properly a tensor product sign.
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Now we can apply this formula for any word containing (X)a. We
write such a word in the form A(Xa)B and the desired differential
form is trace(EtAd(Xa)B) = trace(BEtAd(Xa)) and we substitute
BEtA in the formula above in place of A.

We actually will have occurrences of ( 1
sqrtn

XQKtX t)a in place of X

and when the formula asks for dX we will really have d( 1√
n
XQKtX t) =

1
sqrtn

(Xd(Q)KtX t+XQd(K)tX t+XQKtd(X)t), note dX does not

occur as X is considered constant here.

A very space-efficient training strategy for any composite of encod-
ing steps is to combine these formulas in the obvious way to obtain
our one-form on the overall weight space, which we re-interpret as
a flow using the Euclidean matric. We could apply the flow for a
short time corresponding to the error associated to each of a long
sequence of correct and calculated answers.

I believe that the preference using the Euclidean metric at the last
step to convert the differential form back to a flow is implicit in how
we train Q and K separately, while in the actual encoding they are
not used separately, only the product QKt is ever used.

It is sometimes difficult to read tutorials about tensorflow, some of
the operations are high-level and hence somewhat rigid. Through
things like rotating cyclic words it is easy to reduce the tensor cal-
culation to a matrix calculation and also undertand it that way.

When we train a sequence of encodings, a point of the space W will
iclude entries for the Q,K, ... of each stage, and the cyclic words
will be longer, but the formula otherwise the same. Thus we have
described explicitly the training strategy.

The actual strategy we would want to use would train not only on a
series of encoding steps but also decoding, as the output of a series
of encoding steps is a ‘meaning,’ and althogh we argue in another
paper that we should not really think of this as encoding any actual
meaning, still it shares with ’meaning’ that there is no easy way
we can describe for a large series of sentences what is the ‘actual
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meaning’ in any literal sense.

So although we can write down the training algorithm for just a
series of encoders, it may be useful only to use this when the size of
n decreases with successive layers, so the output is only something
like an indicator of truthfulness, or kindness, or some other attribute
of meaning where we might be able to find a store of ‘true sentences’
and ’false sentences.’ Thus we could use the literal training strategy
we’ve described to train just a series of encoders to recognize a
notion of truth or reliability, for example. and only when a series of
decoders (which function very similarly to the encoders) could we
train on something like language translation.

I have omitted adding X to the right side of (1) to include a ‘short-
cut’ around an encoding step. It might be worth considering what
type of feed-through one should want to have when n decreases
step-by-step.

An associated javascript at https://spectrograph.uk/transformer.html
is under construction where we will train just a series of encoders to
detect truth.

The algorithm

I considered encoding this in tensorflow – there is a google tuto-
rial along those lines which has the user uninstall and install many
packages. There is also tfjs.js, however tensorflow documentation
and organization is horrible, to create a “rank” four tensor corre-
sponding to dX for X a matrix one must set one entry to 1, the
‘scattternp’ function shows that to do this for a ‘rank two’ ten-
sor requires an auxiliary rank one and rank two tensor, and tfjs.js
crashes unless the type is set to integer... which is not possible upon
object creation
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Yet, just as working on the blackboard, since it only needs to be
done once for each particular model architecture, we can use regular
expression rules. We start with −EdE which we might call the
negative Euler form, and write E as a finite sum of words. Each
letter in one of the words is a constant matrix, a weight matrix, or
its transpose, or is ( )a or ( )m applied to such a word.

Let’s switch to writing a and m on the left since we’ll be using
javascript.

If we write mm(A,B) for the matrix (or matrix of forms) B with the
entries set to zero which are in the position where A has negative
entries, then we have the valid rules

d m(A) = mm(A, dA).

and
mm(A,B + C) = mm(A,B) +mm(A,C).

Also, of course, we may use the associative and distributive rules
and Leibniz rule acting on the second argument of mm, then, in
order to ‘flip’ a factor which contains a differential out of the second
argument we have the crucial rule

A mm(B,C) = mm(Bt, A)C.

As for a( ) if we write aa(A,X) for the matrixA′ such that d (AdX) =
A′dX we have of course

d a(AdX) = aa(A,X)dX,

and when dX is a sum BidCi we have as just a consequence of
associativity of matrix multiplication

d a(AdX) =
∑

aa(A,X)Bi dCi.

It follows that we can write a simple regular expression loop which
will translate the string representing the minus Euler form, in human-
readable format, −E ∗ dE into a sum for each weight matrix W of
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any level, of an expression AdW where A is a word consisting of the
original matrices or their transposes or their images when aa( , ) or
mm( , ) are applied.

The actual training algorithm, in each step, merely evaluates for
each W the sum of products of known matrices and transposes and
values under aa( , ) and mm( , ).

At some point we will also put in memoziation to avoid repeated
calculations in calculating matrix products.

With the type of configuration we’re considering, and the same is
true for the configuration in “Attention is all you need,” when we
expand −E ∗ dE as a sum, each weight matrix in each level only
occurs in one of the terms of the sum. I do not know if this may be
a reason why such configurations work well practically.

Note that we’re assuming that the input matrix has already been
position-encoded, we’ll put in the standard position encoding with
an exponential base chosen to be compatible with the values of n
and N which the user chooses for the first layer.

As I say, this project is underway at what will be a small, perhaps
two or three page javascript, which when the user chooses a config-
uration will display the human-interprable string for −E ∗dE which
also the training algorithm will read before it can begin training. It
will be at https://spectrograph.uk/transformer.html
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