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I. Introduction.

When we speak of projective planes, we will mean combinatorial
projective planes. This is in the sense that it is currently beyond
computer calculation to know whether it is possible to schedule stu-
dents in classes with each student taking 13 classes of 13, with each
pair of students having one class in common. Such a configuration
cannot satisfy Pappus’ and Desargues’ theorems since there is no
twelve-element field.

In earlier collaborations we proved that existence of a 1 + n + n2-
element projective plane is equivalent to embedding the root lattice√
nAn2+n into An2+n in such a way that the induced action on the

finite cyclic quotient group Ân2+n/An2+n
∼= Z/((1 + n + n2)Z) is

multiplication by n + 1. The discriminant of Ân2+n/An2+n ⊗ Z/nZ
is 1 + n+ n2 ≡ 1 mod n and the embedding provides an isotropic

subgroup of order n
n2+n

2 . The number-theoretic Bruck-Ryser condi-
tion on the number n is exactly the condition for a quadratic form
over Z/(nZ) of discriminant 1 and dimension n2+n

2
to have such an

isotropic subgroup. When the multiplicity of a prime p in n is odd
there is a nondegenerate form over Fp on the middle layer, when also
n2+n

2
is odd, the hyperbolic form has discriminant −1 while there is

a form of dimension 2 and discriminant 1 with a nonzero isotropic
vector if −1 mod p is a square.

As a problem of Siegel theta series, on the other hand, this involves
a symmetric matrix Ω with positive definite imaginary part; the
axioms become a system of equations with one equation for each
entry. We focus on specializations Ω = Qi. The shift of emphasis
attempts to be an allegory of the following practical observation:
if a size two square matrix M has columns v, w then knowing the
entries of M tM requires knowing vtw. But MM t = vvt + wwt is a
sum of two parts, one completely independent of w and the other
completely independent of v.
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This leads to a particular calculation of what we call the ‘mass’ of
the projective planes with 1 + n + n2 points as the minimum of
the value of a particular coefficient of the theta series of an ordinary
(positive definite rational integer) lattice of dimension N as we allow
the lattice to vary.

We’ll begin the analysis by describing the theta series of every uni-
modular (positive definite rational integral) lattice in terms of a
‘characteristic polynomial’ c(M) ∈ Z[C]. Shimura’s paper introduc-
ing half-integer modular forms appears not to have noticed that the
level can be taken index three, not only level index six; rather than
search the literature we make the simple improvement, and c(M) is
analogous to a Weierstrass polynomial. This gives an upper bound
for µ(N) which is an equality if M is generic, not expected to be
equality when M is unimodular, while our unimodular calculation
surely can be extended later, by others perhaps, by using more of
the geometric context.

All that is needed to construct c(M) as it is, or let us call it c(L)
for a unimodular lattice L is the one series which we consider as a
‘constant of nature,’ C + 24C2 + 852C3 + 35744C4.... which results
by solving for q in the equation C = 1

16
λ(q)(1 − λ(q)). From the

theta series of a formal difference θ([L] − [E]) where E is the Eu-
clidean lattice of the same rank, we evaluate the q-expansion at this
‘constant of nature’ series by the substitution

Corollary 12.

c(L) = θ([L]− [E])(C + 24C2 + 852C3...) ∈ Z[C]

with
θ([L]− [E])(q) = θ(L)(q)/θ(E)(q)

.

Regardless of whether L may be even or odd (more correctly, even
or general – there is no such thing as an odd lattice), the polynomial
c(L) ∈ Z[C] then has degree at most [N/8] where N is the dimension
of L. The coefficients of c(M) arising in this way from a change-of-
coordinate automorphism in the q-expansions ( C/q is a unit) give
the direct formula for the number of elements of every length in a
unimodular lattice of rank N in terms of the lengths of elements up
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to [
√

N/8 ]. The polynomial c(M), paired with the dimension N ,
gives a pair (c(M), N) belonging to the image of the commutative
group underlying a Witt ring W0 with Z-basis the indecomposable
unimodular lattic isomorphism types, and there is an induced exact
sequence of commutative groups

0 → A → W0 → Z[[C]]× × Z
such that there is a unique largest ideal K ⊂ W0 contained in A.

Amodification where the kernel isK exactly involves including some
functoriality, that is we need to apply the map c × rank : W0 →
Z[[C]]× × Z to a tensor product L ⊗M and view M as a variable,
so c(L ⊗ M) is a bilinear form on W0 whose kernel is the ideal K
and c(L ⊗ –) induces W0 → (Z[[C]]× × Z)W0 and in turn an em-
biedding W0/K → (Z× × Z)W0 . Since K is an ideal the iamge has
a ring structure with the multipication in W0/K corresponding to
a Witt operation in (Z[[C]]×)W0 which distributes across multipica-
tion. One wonders whether two historical definitions of ‘Witt ring’
can be made to coincide. The relation with the Chern character in
topology, coming from the big Witt Ring structure, might be related
to the Witt structure of tensoring lattices.

Associated to each unimodular lattice of dimension N (we’ll even-
tually apply this when the unimodlar lattice is a tensor product), is
a map P1 → AN which we define as follows. Each element of P1 lifts
to a point τ ∈ H under the branched cover given by the action of
the index-three subgroup of PSl2(Z) generated by S and T 2. Then
if Q is the size N symmetric unimodular integer matrix associated
to our lattice, we map each such τ to the class of Qτ in Siegel’s
upper half plane modulo the action of the corresponding subgroup
of Siegel’s modular group modulo {I,−I}. To show that the ac-
tion is well-defined we need to consider S(τ) = −1

τ
and verify that

Q−1
τ

is in the same orbit as Qτ. The block matrix

(
0 Q−1

−Q 0

)
is integer symplectic and sends Qτ to (0Qτ + B)(CQτ + 0)−1 for
B = Q−1 and C = −Q which is Q−1(−Q2τ)−1 = Q−1−1

τ
and this

describes the same point as Q−1
τ

since Q and Q−1 define a pair of
mutually dual lattices, equal because Q is unimodular. Therefore
each unimodular lattice L has associated a rational curve in AN , a
copy of C ∪ {∞}, and the characteristic polynomial of L describes
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the unique polynomial with constant coefficient 1 which has the ze-
roes with multiplicity agreeing with the intersection divisor of the
theta divisor of AN with the embedded rational curve.

Apart, then, from the considerations of naturality there is the cru-
cial question of genericity which we can focus on a bit more now,
in the question to what extent does the whole theta divisor depend
on its intersection with this countable collection of rational curves.
A lattice which is not unimodular has complex scalar multiples by
elements τ in the upper half-plane. An interlinked concept is that
we should consider the lattice and its dual. For tensor products,
we need make no distinction when L Is unimodular between an
element of a tensor product L ⊗M versus a linear map of the un-
derlying abelian groups L → M . Both the inclusion of naturality
needed to reduce the subgroup A to an ideal, and the inclusion of
genericity that will allow us to understand whether we can include
non-unimodular lattices or even algebraic and non-rational lattices,
both involve replacing unimodularity with the more general concept
of duality.

Two paths towards explicating the mass of finite projective planes
failing Desargues’ or Pappus’ axioms or other features if they had
been of comparable cryptographic interest, then, are that there is
an evident mass formula which works for any generic M , and a the
Witt operation coming from tensor product which we will require a
functorial approach, and everything reduces to a simple character-
istic polynomial in the unimodular case when duality degenerates.
Stepping back a bit, one should say, the reason there are finiteness
theorems at all in modular forms is that projective varieties are al-
gebraic; this in turn because Laurent series in C invariant under
C 7→ 1

C
are finite; this principle applies most clearly in the unimod-

ular case, we are considering extending the direct calculation of c to
tensor products and to a Zariski closure.
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II. Calculation of the mass of projective planes

Let N = 1 + n + n2 and let o be the all-ones column vector of size
N.

1. Definition. The mass µ(N) of the projective planes with N
points is the sum of 1/Aut(P ) where P runs over representative of
the isomorphism types of combinatorial projective planes with N
points.

2. Notation For a size N square real matrix M let Q = M tM be
the associated symmetric matrix. We will say Q is of rational inte-
gral type if the entries are rational integers or rational half-integers
and the diagonal entries are integers. We define the real number
d(M) = n.trace(Q)+otQo with n such that N = 1+n+n2, and let
L ⊂ RN be the integer span of the columns of M. When we speak of
the magnitude of an element of L we are referring to the Euclidean
magnitude in RN .

3. Theorem. µ(N) is equal to the 1
2NN !2

times the minimum over
square size N real matrices M of the number of ways of writing the
number d(M) as the sum of squared magnitude of N elements in
the lattice L which is the integer span of the columns of M .

Proof. The minimum is achieved when the entries are linearly inde-
pendent over Q. Then the squared magnitudes of N elements adding
to d(M) decomposes into of N2 equations saying that after possibly
negating each element, the integer coefficient sequences describing
these elements of L comprise the incidence matrix of a combinato-
rial projective plane. The number of such tuples is 2NN !2 times the
number of projective planes with a total ordering chosen for both
points and lines. The stabilizer of an isomorphism type under per-
muting points and lines is the automorphism group hence the mass
µ(N) is the reciprocal of this number added once for each such tuple
of elements of the lattice.

In complete detail, choose for each i a linear combination of the
columns of M with coefficients v1,i, ...vN,i (which we might obtain
by applying the matrix M to that column in the usual way); and if
we denote the column as vi its squared magnitude is (Mvi)

tMvi =
vtiQvi. If Q has just the (j, j) entry equal to 1 and the rest zero,
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then trace(Q) = 1 and the entries of Q sum to 1, while the squared
magnitude of the i’th vector is v2j,i giving

∑
i v

2
j,i = n · 1 + 1 =

(n + 1) for every j. If instead every entry of Q is taken to be 1,
the sum of the squared magnitudes is

∑
i(
∑

j vj,i)
2 which is to equal

trace(Q) + otQo = n + (1 + n + n2)2 = (n + 1)2(1 + n + n2). If
for any one value of i, the absolute value |

∑
j vj,i)| were less than

(n + 1) surely its square would be less than (n + 1)2 and there
would need to be a different index i′ such that (

∑
j vj,i′)

2 is larger.

Then |
∑

j vj,i′ | > n + 1 =
∑

j v
2
j,i′ . Now one asks, how can a sum

of numbers be strictly decreased in magnitude by squaring each
number; it cannot. Thus for all i, |

∑
j vj,i| = n + 1 =

∑
j v

2
j,i.

This means all vj,i ∈ {−1, 0, 1} and for each i exactly n + 1 of
the vj,i are not zero, and these are all either equal to 1 or equal
to −1. There are 2N solutions for each basic solution in which all
vj,i ∈ {0, 1} by multiplying all vj,i by 1 or −1 for all j, for each
fixed i. From now on we will only consider such basic solutions with
positve entries. Looking at a basic solution, we consider the case
when Q has just a pair of nonzero off-diagonal entries in rows a, b.
We have trace(Q) = 0, oQot = 2 and

∑
i va,ivb,i + vb,iva,i = 2,

meaning
∑

i va,ivv,i = 1. The rule from before when j = a and j = b
gives

∑
i v

2
a,i = n + 1 =

∑
i v

2
bi
and when we revisit these knowing

all vj,i ∈ {0, 1} it tells us that if we assembled the vj,i into a matrix,
each row now would have n+ 1 entries of 1 and the rest zero, while
the fact

∑
i va,ivb,i = 1 tells us that the rows have one entry of

1 in common exactly. Therefore the rows satisfy the axioms of a
projective plane and it follows easily now that the columns also do.

4. Remark. The minimum is achieved generically, thus it is
achieved for our (positive definite) matrices arbitrarily close to any
particular integer matrix. It is also achieved for a (large) nonempty
set of matrices M such that additionally Q is rational integral type,
thus

5. Corollary. Writing q = eiπτ we have that µ(N) occurs as
the minimum value, as M ranges even with the restriction that
Q = M tM is rational integral type, of the coefficient of qiπd(M)τ in
the q expansion of 1

2NN !2
θ(M, τ)N where θ(M, τ) =

∑
v∈L e

iπ|v|2τ .

The significance of M having ‘rational integral type’ is that it is
equivalent to the exponents in the q expansion of θ(M) being whole
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numbers. A more usual, and stronger, condition is that M is (ratio-
nal) ‘integral’ which is equivalent to all entries of Q = M tM itself
being whole numbers. These definitions and properties are actually
properties of Q or even L and do not depend on the choice of M
however we find it helpful to visualize columns of a particular matrix
M in RN .

The corollary remains true, of course, if we strengthen it by replacing
‘rational integral type’ with just ‘integral’.
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III. Half-integer weight

Some discussions of half-integer weight such as Shimura’s first paper
focus on Γ0(4) which becomes Γ(2) if we use the Jacobi definition
of θ(τ), without the extra factor of 2; while the most useful cocycle
extends rather to the larger index three subgroup H of the modu-
lar group containing both Γ(2) and the element S; rather than get
involved with invariants of various smaller subgroups one can work
equivariantly for the action of this group H on the full ring of entire
holomorphic functions H → C.

The group PSl2(Z) acts on H of course, and it acts on the Riemann
sphere where the action is determined by its permutation of 0, 1,∞.
The λ function H → P1 is equivariant for this action, so it is com-
patible with the group homomorphism PSl2(Z) → Sl2(F2) = S3.

The only cocycle that is needed will be a cocycle with values in the
entire holomorphic functions on H, but it does not extend mean-
ingfully to the whole group PSl2(Z), rather only on the index-three
subgroup which I call H, which is the inverse image of the cyclic
group {1, S} under reduction modulo two.

The extension is split, the same group {1, S} can be interpreted as
a subgroup of PSl2(Z).

The subgroup H of index three is generated by T 2, S and the cocycle
c sends T 2 to the identity and both S to 1/

√
iτ , the entire holomor-

phic function on H where the branch of square root is chosen so the
value at i is 1.

The non-extendability of the cocycle is very important and it ex-
plains the only reason anyone ever needed to use any congruence
subgroups.

The invariants of the group action of H twisted by c and its positive
powers (composing c with the i’th power map on functions) describe
a graded ring; its labelling half-integers (instead of using the actual
power of c is now only a historic artefact.

Knowing the ‘graded truncation’ to degrees an integer multiple of
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the whole number 2 gives enough information to show that the theta
series of any unimodular integral (positive definite) lattice can be
expressed as a power of the theta series of Z itself times what is
a priori a rational polynomial in C = 1

16
λ(1 − λ). The terms of

degree a whole multiple of two in the H invariants for the twisted
action is a polynomial algebra with a generator in degree two and a
generator in degree four and we will take care of both odd integer
and half-integer parts and the degree-two generator all by passing
modulo isomorphism types of Euclidean lattices.

Let S, T ∈ PSl2(Z) be the matrices

(
0 −1
1 0

)
and

(
1 1
0 1

)
con-

sidered modulo {I,−I}. The group acts on the entire holomorphic
functions H → C where H is the upper half plane; if we let τ be the
coordinate coming from the standard embedding of the upper half
plane within the plane, the action is given

(Sf)(τ) = f(
−1

τ
)

(Tf)(τ) = f(τ + 1).

We verify that this is a legitimate action by checking that the ac-
tion of (TS)3 on the identity function τ sends τ to −1

−1
−1
τ+1+1

+1
which

evaluates to τ.

Next we pass to the subgroup H ⊂ PSL2(Z) which is the group of
elements which reduce modulo 2 to one of the two permutation ma-
trices. The generators of H are S, TST−1 and T 2, and by restriction
the subgroup H continues to act on our function space.

We create the modified action of H by choosing a function c(g) for
g ∈ H by the rule

gf(τ) = c(g)f(gτ)

The result is a group action if and only if the function c from
H to the ring of entire functions on H satisfies the cocycle rule
c(gh) =g c(h)c(g). Our group H maps onto the order-two cyclic
group generated by S with kernel the normal subgroup known as
Γ(2) freely generated by T 2 and ST 2S. The rules

c(TST−1) = c(S) =
1√
−iτ

, c(T 2) = 1

9



uniquely define a cocycle. It cannot be considered a ‘pullback’ from
the cyclic group of order two because the original action does not
descend, even while it is determined by its values at these three
elements. Note for example c(ST ) =S c(T )c(S) = 1 · c(S) = c(s)
while c(TS) =T c(S)c(T ) =T c(S) is −1

−i(τ+1)
. Here by

√
−iτ we refer

to the square root branch such that 1 =
√
−iτ when τ = i. The

only relation we need to check is

Sc(S)c(S) =S (
1√
iτ
)

1√
iτ

=
1√
−i
τ

1√
iτ

= 1

which does hold due to our choice of branch for the square root
function.

There are also the powers of c where we write ci(g) = c(g)i. The
direct sum of the invariant holomorphic functions for all the (pos-
itive) powers of c comprise a graded ring, it is conventional to let
the invariants for the action using ci be given degree i

2
; of course

the notation exists for historical reasons. The invariants of degree
a whole even number for the normal index two subgroup Γ(2) are
very well-known, they comprise a polynomial algebra generated by
what we shall call x = θ(τ)4 and y = θ(τ + 1)4. The invariants of
H on this whole-number-even degree subring are the same as the
invariants of the cyclic group action of S on the same ring. It fixes
x and sends y to

−τ−2θ(1− 1

τ
)4

In terms of the two-variable theta function θ(z, τ) =
∑

eiπn
2τ+2iπnz

the Jacobi sum identity says θ(0, τ)4 = θ(1/2, τ)4 + eiπτθ(τ/2, τ)4.
Each value of the two-variable theta function in the Jacobi formula
can be rewritten in terms of the single variable function θ(τ) =
θ(0, τ), as

θ(1/2, τ) = θ(1 + τ)

eiπτ/4θ(τ/2, τ) = (iτ)−1/2θ(1− 1

τ
).

For the first equation both sides represent different expressions for
the same sum, the sum over integers n of the quantity eiπn

2τ+iπn
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(which also happens to be the alternating sum of the eiπn
2τ ). For

the second equation, the left side is the sum over integers n of
eiπτ (n2+n+1). Since eiπ/4τ−1/2 = 1√

−iτ
the right side is the trans-

form of θ(τ) using the action of S and the cocycle c. Taking fourth
powers and substituting we see

θ(τ)4 = θ(1 + τ)4 + (−τ−2)θ(1− 1/τ)

= θ(1 + τ)4 +S θ(1 + τ)4.

From this
Sθ(1 + τ)4 = θ(τ)4 − θ(1 + τ)4

Remembering that we are writing x = θ(τ)4 and y = θ(1 + τ)4 and

that Sx = x this gives Sy = x− y and Sλ = 1− Sy
x
= 1− x−y

x
= y

x
=

1 − λ. As S sends the ideal points 1 to −1 in the upper half plane
which both map to [y : x] = [1 : 0] the point at infinity, while λ by
Sλ = 1− λ makes λ S-equivariant. More generally λ is equivariant
for the action of PSl2(Z) on H inducing the action on P1 preserving
{0, 1,∞} for which Γ(2) is the stabilizer of λ. Now from the rules
Sx = x, sy = (x− y) we see also that

6. Theorem. The terms of weight a whole multiple of two in the
ring of half-integer modular forms for the cocycle c is the same as
the ring of ordinary modular forms of weight a whole multiple of
two for the index three subgroup H ⊂ PSl2(Z). The group H is
generated by Γ(2) and the element S, and the ring of modular forms
of degree a whole multiple of two and level H is freely generated by
the following elements of weight 2 and 4:

θ(τ)4

θ(τ)4θ(1 + τ)4 − θ(1 + τ)8
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IV. Relation with modular forms of lattices.

Let M be a real square matrix of size N with nonzero determinant
and L the column span of M in Euclidean space RN .

Proposition 7. θ(M, −1
τ
) = (−iτ)N/2( 1

det(M)
)θ(M ′, τ) where M ′ =

(M t)−1.

Proof. The dual basis of RN to the columns of M is the columns of
M ′ and this is the standard Poisson summation argument.

We write θ(τ) for θ(M, τ) when M is the size-one identity (this is
the classical theta function which Jacobi had denoted θ3).

8. Corollary. If Q = M tM is rational integral of determinant
1 (so L is what is called a ‘unimodular lattice’) then θ(M, −1

τ
) =

(−iτ)N/2θ(M, τ) and is therefore an element in our ring of modular
forms invariant for the twisted action of H.

Proof. To say M and M ′ have the same column span (image) is to
sayM ′−1M is invertible with integer entries, andM ′−1M = M tM =
Q.

Thus

9. Lemma. Let e, f ∈ {0, 1, 2, 3} such that e ≡ −N mod 4 and
f ≡ −N2 mod 4. For M as above

i) There is a unique polynomial P (X, Y ) with rational coefficients
which has degree 1

4
(N + e) if we assign X to degree 1 and Y

to degree 2, such that θ(τ)eθ(M, τ) = P (θ(τ)4, θ(τ)4θ(1 + τ)−
θ(1 + τ)8).

ii) Writing λ for the modular lambda function (of τ) we have
θ(M, τ) = θ(τ)N+eP (1, λ(1− λ)). hence

1

2NN !2
θ(M, τ)N =

1

2NN !2
θ(τ)N(N+e)P (1, λ(1− λ))N .

iii) The coefficient of eiπτ d(M) in the q expansion of this function
an upper bound for the mass µ(N) which is equal to the sta-
ble part of the coefficient which remains while M is perturbed
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transcendentally (without preserving for example its determi-
nant).

We will simplify the analysis in terms of a single variable polynomial
and the rank in a later section. The number d(M), the sum of the
squared lengths of the columns of M added to the squared length
of the column sum, always exceeds N . The Bruck-Ryser condition
(which can be proved by considering lattices modulo n2) gives arbi-
trarily large values of n such that there is no projective plane with
1+n+n2 points. There must be an associated lattice realizing this
bound. We can always choose M so that one column is minimal
length. Therefore a lattice realizing the bound in the cases when
µ(N) = 0 cannot have an increasing sequence of coefficients of its
theta series.

10. Remark. Rains and Sloane proved that once N ≥ 24 a uni-
modular lattice has a point of squared norm less than or equal to
2[N/24]+2. Therefore for a unimodular lattice we can always choose
M to have a column of squared length ≤ 2[N/24] + 2.
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V. Remarks and caution about Riemann theta relations

By choosing perpendicular elements f1, ..., fN ∈ L spanning a sub-
lattice of finite index, with coset representatives aα, we can write
θ(M, τ) in terms of the two-variable theta function θ(z, τ) =

∑∞
n=−∞ eiπn

2τ+2iπnz

as a sum with terms indexed by α, with each term being a sum over
the corresponding coset. We obtain

θ(M, τ) =
∑
α

eiπτ |aα|
2
∏
i

θ(⟨eα, fi⟩τ, |fi|2τ)

corresponding with the expression |aα+
∑

nifi|2 = |aα|2+2
∑

ni⟨fi, aα⟩+∑
n2
i |fi|2

For θ(M, τ)N instead of only taking the N ’th power of this, we can
also use a finite index sublattice of L⊕N which needn’t respect the
direct sum decomposition.

This formula can be used to calculate the theta series of a tensor
product and in principle can answer the question whether the group
theoretic kernel in W0 is an ideal. In any case in a later section
we define a possibly smaller subgroup which is guaranteed to be an
ideal and give a different formula for the theta series of a tensor
product.
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VI. A ‘characteristic class’ and big Witt vectors

The rational functions which we considered can be viewed as ele-
memnts of the polynomial ring in one variable, let us call it C =
1
16
λ(1 − λ) and for each lattice of rank N with e ∈ {0, 1, 2, 3}

such that e ≡ −N mod 4 we obtain a polynomial with Q-entries
of degree at most N+e

8
in the variable C. This is because for M

unimodular of rank N such that Q = M tM is rational integral
θ(M, τ)θ(τ)e = P (X, Y ) with P homogeneous of degree N+e

4
if we

give X = θ(τ)4 degree one and Y = θ(τ)4θ(1 + τ)4 − θ(1 + τ)8

degree two. Then P (1, Y/X2) becomes an ordinary polynomial in
C which we will call c(M). The highest power of C that occurs
when the polynomial c(M) is simplified equals the highest power of
Y that can actually occur in P , this is the whole number N+e−4

8
if

N + e ≡ 4 mod 8 and N+e
8

if N + e ≡ 0 mod 8.

The theta function of a direct sum of lattices is the product of the
theta functions of the lattices, and the same is true for the character-
istic polynomials in C, with now any Euclidean lattice contributing
the trivial factor of 1.

We might call the element c(M) ∈ Q[C] coming from a unimodular
lattice of integral type spanned over Z by the columns of M its
‘characteristic polynomial’, it is reminiscent of a total Chern class.
The leading coefficient in the q-expansion of C is 0 if we scale by a
factor of 16 so let’s define C = 1

16
λ(1− λ) = 1

16
(16q − 128q2...)(1−

16q + 128q2...) so for unimodular lattices of rational integral type
and rank N less than 16 the only possible ‘characteristic polynomial’
is a0 + a1C and θ(M, τ) = θ(τ)N(a0 + a1C) The numbers a0 and a1
in this case are just the first two coefficients in the q expansion of
the polynomial c(M) ∈ Q[C] upon setting C to 1

16
λ(1− λ).

We can prove that always c(M) ∈ Z[C] and summarize and justify
what we have said,

11. Theorem. Any unimodular lattice (even or odd), spanned in
Euclidean space by the columns of a matrix M, has an associated
‘characteristic polynomial’ in one variable c(M) ∈ Z[C]. It is unaf-
fected by direct sum with any Euclidean lattice, and for a lattice of
dimension N the degree in C of c(M) is at most N/8. The theta
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series θ(M, τ) is determined by its ‘characteristic polynomial’ c(M)
by replacing C by 1

16
λ(1 − λ) and multiplying by θ(τ)N leading to

the simple formula

θ(M, τ) = c(M)(
1

16
λ(τ)(1− λ(τ)))θ(τ)N .

where C(M)( 1
16
λ(τ)(1− λ(τ)) means the polynomial C(M) ∈ Z[C]

with C evaluated at (=substituted for) the series 1
16
λ(τ)(1−λ(τ)) ∈

Z[[q]]. The subgroup of Z[C] spanned as a group under addition by
the c(M) is a subring. All c(M) have leading coefficient in the q
expansion equal to 1. In this ring a direct sum of lattices corresponds
to the product of their characteristic polynomials.

Proof. The only thing mentioned that was not already proved
is that the rational coefficients of every c(M) ∈ Q[C] in the uni-
modular case are ordinary integers. The proof is similar to the
observataion that Weirstrass polynomials have integer coefficients
in the integral setting, write u = C

q
and consider the q-expansion

of θ(M,τ)
θN

∈ Z[q]. It belongs to Z[uq] and the magic which is cre-
ated by the theory of half-integer modular forms means that it
is a polynomial in uq. That is to say, the sequence of coefficients

of the polynomial c(M) is the ‘uq’ expansion of θ(M,τ)
θN

which not
only has integer coefficients but happens to have only finitely may
nonzero coefficients. Moreover the coefficients are 1, a1, a2, ...a[N/8]

are just simple transforms of the number of lattice elements of length
0, 1,

√
2,
√
3, ...,

√
[N/8]

There is nothing mysterious about the needed unit u which induces
the automorphism of Z[q] by substituting qu for q, which is the main
step in transformation we’ve described of the infinite sequence of
numbers of elements of each squared length into the finite sequence
of coefficients of the characteristic polynomial. The unit u ∈ Z[[q]]
is explicitly

u =
(
∑∞

n=−∞(−q)n
2
)4) 1

16q
((
∑∞

n=−∞ qn
2
)4 − (

∑∞
n=−∞(−q)n

2
)4)

(
∑∞

n=−∞ qn2)8

where n ranges over all integers (including negative and zero) in
each sum.
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12. Corollary. In the positive-definite unimodular setting, once
the number of lattice elemnts up to length

√
[N/8] are written

down, the number of lattice elements of all lengths are given by
a direct formula (inverse the change-of-coordinate automorphism
Z[[q]] → Z[[[uq]]) The characteristic element c(M) in Z[C] expressed
in the variable C is given by

c(M) = θ(M)(v−1C)
∞∑
j=0

(1− (
∞∑

n=−∞

(v−1C)n
2

)N)j ∈ Z[C]

where v is the unit ϕ(u) ∈ Z[[C]] obtained by applying to the unit u
pictured above ( but with q replaced by C) the unique automorphism
ϕ of Z[[C]] such that ϕ(uC) = C.

Thus, in N dimensions the number of elements in a unimodular
lattice of dimension N which have distance from the origin less than
or equal to

√
[N/8] determine the number of elements of every

other distance from the origin.

The proof is this: start with the original equation involving the unit
above c(M)(qu) = θ(M)(q)/θ(q)N . It holds q replaced everywhere,
including in the expression for u, with a formal variable C. Then
c(M)(Cu) = θ(M)(C)/θ(C)N . Finally apply ϕ and Cu becomes C
on one side of the equation while C becomes v−1C on the other.

Incidentally, there is just one such unit v ∈ Z[[C]]. If it could be
written down once it will never need to be calculated ever again, it
has infinitely many terms (like the difficulty with the digits of a con-
stant of nature such as π), it cannot actually be written down once,
but its definition can. The series for v begins v = 1− 24q− 276q2 −
8672q3 − 344658q4 − 15390480q5 − 737293560q6 − 37026698304q7 −
1923581395371q8... and when we invert, replace q by C and multiply
by C we find

v−1C = C + 24C2 + 852C3 + 35744C4 + 1645794C5 + 80415216C6

+4094489992C7 + 214888573248C8 + 11542515402255C9 + 631467591804472C10...
(1)

Also, on the right side, the factor following θ(M)(v−1C) is nothing
but a series expansion of the N ’th power of the q-expansion of θ(τ)−1

with q replaced by v−1C. It is probably better to write the formula

c(M) = θ(M)(v−1C)θ(v−1C)−N

17



and now the second factor is the (1−2(v−1C)+4(v−1C)2−8(v−1C)3+
14(v−1C)4 − 24(v−1C)5 + 40(v−1C)6 − 64(v−1C)7 + 100(v−1C)8 −
154(v−1C)9 + 232(v−1C)10...)N where one merely substitutes in the
permanently fixed series for v−1C just above, which, also, come to
think of it, we can do once and for all, giving

second factor = (1− 2C − 44C2 − 1520C3 − 62930C4 − 2875004C5 − 139754312C6

−7089934304C7 − 371085722540C8 − 19890542685160C9 − 1262935183608944C10...)N
(2)

and this is a once-for-all calculation.

We should really stress this, that the two series above are universal;
the same two series work together for every unimodular lattice.

It seems like we have constructed (more likely begun learning known
things) some sort of racing car, almost, and one cannot wait to see
if this really works.

Let’s try this for the odd indecomposable twelve dimensional lattice
L from the oeis database with θ(M) = 1 + 0q + 264q2 + 2048q3 +
7944q4 + 24576q5 + 64416q6 + 135168q7 + 253704q8 + 475136q9 +
825264q10, we replace q by series (1) which is C + 24C2 + 852C3...,
then multiply by the second factor which is the series (2) with the
exponent chosen as N = 12 giving c(M) as 1− 24C + 0C2 + 0C3 +
0C4 + 0C5 + 0C6.... Since all but two coefficients have simplified
to zero, this is equal to the polynomial 1 − 24C ∈ Z[[C]], and now
that single degree-one characteristic polynomial, taken together with
the rank 12, determines the theta series, it is merely the adjusted
theta series of Euclidean space (1 − 24C)θ(τ)12 upon setting C =
1
16
λ(τ)(1− λ(τ)).

It really will be true that even though the formula above is the
expression of a power series in Z[[C]], once we replace q with C
in the formula for v and substitute into the formula for c(M), the
unimodularity condition implies that the coefficients in c(M) of of
all powers of C higher than N/8 are zero and there is no need to
caluculate them; or we can replace every q expansion here by its
Taylor polynomial up to that degree (in this example, degree one)
and ignore higher terms. One has a finite polynomial expression
for c(M)(C) in starting from only the truncated theta series of the
lattice, which is the finite generating series for the number of lattice
elements of length 1,

√
2,
√
3, ...

√
[N/8] .
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In the example, this means that, since all the subsequent coefficients
in 1− 24C cancel to zero we could have erased all but the first two
terms of the original theta series leaving 1+0q ignoring anything of
higher degree to find c(M) = 1− 24C; from this and the dimension
the full theta series of the lattice reappears including all the higher
terms +264q2 + 2048q3 + 7944q4 + ..

That is to say, once c(M) is written down using elements of norm

no larger than
√

[N/8] one can substitute c(M) and N into the
formula of the previous theorem to obtain the full theta series.

For another example, just from knowing the E8 lattice is eight di-
mensional unimodular and has no element of length 1 its theta series
begins 1 + 0q giving c(M) = 1 − 16C exactly (using just terms of
degree zero and one in (1) and (2)). Then θ(E8, τ) = (1−16C)θ(τ)8

with θ(τ) = (1+2q+2q4...) and 1−16C = 1−16q+384q2−4800q3+
41984q4 − 290016q5 +1688064q6 − 8612736q7 +39542784q8... giving
full expansion of the product θ(E8) = 1+240q2+2160q4+6720q6+
17520q8...

Calculations we find online use the fact that E8 happens to be an
even lattice, its theta series we see only now has no odd powers
of q so is invariant for q 7→ −q and is hence invariant for the full
modular group. We have instead used Theorem 11 relying on half-
integer modular forms and the cocycle c which work for both even
and odd unimodular lattices; the fact E8 happens to be even arrives
in our conclusions, not our hypotheses, we do not need to assume
it anywhere. Even while 1 and c(E8) generate the polynomial ring
Q[C] over Q there is more information when we work integrally and
even more if we instead work integral-multiplicatively.

Wikipedia’s table has three unimodular lattices of lattice of dimen-
sion 12, there must be one besides Z12 or E8⊕Z4. and that it has no
element of length 1. We could have replaced its theta series with 1
in the formula for the characteristic polynomial, we still would have
obtained 1 − 24C and hence its full theta series just from that one
fact

(1− 24C)θ12 = 1 + 0q + 264q2 + 2048q3 + 7944q5....
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Comparing the new rank twelve lattice with E8 and the Euclidean
lattice, The new characteristic polynomial is a rational linear com-
bination of the earlier two, which are 1 and 1−16C, but remember:
direct sum of lattices represents addition in W0 but it agrees with
multiplication, not addition, of theta series.

For further examples, we’ve coded the relevant functions in javascript
at https://spectrograph.uk/modular.html. if you enter a com-

mand like extend([1, 3, 5], 35) it will write down the series whose co-
efficients are the only possibilities for number of elements of each
squared length in a positive definite unimodular lattice of rank
35 assuming the sequence starts 1, 3, 5, 0, 0.. The javascript an-
swers 1 + 3q + 5q2 + 401142q5 + 22277394q6... and you can set the
number of terms by writing for example trunc = 15. Or, to cal-
culate the characteristic polynomial of the Leech lattice you can
say char(Leech, 24) and it answers 1 − 48C + 48C2 − 4096C3. To
do the same calculation stepwise, you get the same answer from
substitute(divide(Leech, pow(theta(), 24)), qprime()), here qrime()
just always returns our ‘constant of nature’ series. We also could
have just defined Leech to be polyT imes(pow(theta(), 24), substitute([1,−48, 48,−4096], C()))
or using the function that does this as in unimod([1,−48, 48,−4096]).
(Caution, if you copy a minus sign from here it will paste a double
minus sign –).

As an example of an (inefficient) upper bound for the mass of
projective planes with 1 + 3 + 32 = 13 points, we use the lattice
E8 ⊕Z5. The matrix Q has trace 5+ 18 and sum of entries 5 + 6 so
d(M) = 3·23+11 = 80 and the 80’th coefficient of 1

213 13!2
(1−16C)θ5

= 1
317651255653438586880000

(1− 16C)θ5 is an upper bound for the mass
of combinatorial 13-element projective planes.

As we’ve said already, the upper bound matches the precise mass if
we allow either transcendental deformations of M or allow the ratios
among the absolute values of its entries to tend to {0,∞}. We do
not expect that it would acheived if we let the lattice range over rank
13 unimodular lattices considering Remark 10; for N = 1+n+n2 we
are counting lattice elements with the same squared norm as n times
the sum of the squared norms of the generators of a fundamental
parallelpiped, N in number, plus the squared norm of their sum,
while for every N ≥ 24 Rains and Sloane found nonzero lattice
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elements of squared norm less than or equal to [N/24] + 2.

Thus the structure integrally of the Witt group of lattices is thus
more interesting than the nearly unrelated Q-span of the theta se-
ries. The abelian group in Z[[C]]××Z spanned by the characteristic
polynomials c(M) paired with the ranks N to give (c(M), N) is a
ring because products of generators come from direct sums of lat-
tices, and we’ve mentioned that the image ofW0 inHom(W0,Z[[C]]××
Z) inherits a Witt ring structure which should be related to a big
Witt vector structure on Z[[C]].

In Reddit posts students say, if multiplication is repeated addition
and exponentiation is repeated multiplication, what comes next? In
fact exponentiation is where the train goes off track. One possibility
of a binary operation after addition and multiplication ought to be
a ∗ b = alog(b) which happens to be commutative, a ∗ b = alog(b) =
elog(a)log(b) = blog(a) = b ∗ a.

In a ring of big Witt vectors we allow more general choices. For
an illustrative example which is not directly relevant, we can define
the Chern character ch(f) of a polynomial f ∈ Q[C] with f(0) = 1.
First define ch as a function acting on elements f ∈ C[T ] such that
f(0) = 1, characterised by two axioms not very different than the
axioms of the logarithm map, that that ch(fg) = ch(f)+ ch(g) and
for any complex scalar v one has ch(1 + vC) = evC . The restriction
of ch to Q[[C]] takes values in Q[[C]] and the Witt product f ∗ g
is defined to be ch−1(ch(f)ch(g)). As we mentioned, this particular
Witt structure is not compatible with the map c : W0 → Z[[C]]××Z.

A completely different, third big Witt structure comes from doing
the same thing but with the q-expansions – replacing C by its q-
expansion rather than working directly with C.

Being able to use the case when N is odd as we can in defining
the characteristic polynomial does matter as our calculation of the
mass of combinatorial projective planes with N points depends on
one coefficient of 1

2NN !2
θ(M, τ) when N , the size of M , is odd, and

the particular coefficient of qd(M) (recall d(M) = trace(Q)+otQo and
Q = M tM) is an upper bound for the mass of projective planes with
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N points which known to be the precise upper bound, in the sense
that the minimum value is the precise mass, if we allow transcen-
dental deformations of M or, I believe, remove the unimodularity
assumption. But the point is, for N even we already know that
there are no combinatorial projective planes with N points.

As we observed in the introduction, the polynomial c(L) for each
unimodular lattice L is the unique polynomial with constant co-
efficient 1 whose roots with multiplicity define the divisor in C ⊂
C ∪ {∞} = P1 ⊂ AN where the rational curve corresponding to L
meets the theta divisor in AN . There is a rank N vector bundle on
AN which is not a trivial bundle even while it describes the fixed
constant complex vector space spanned by each lattice, the columns
of each matrix Ω with positive definite imaginary part, equivalently
the real vector space spanned by those columns together with the
columns of the identity matrix (which when we reduce modulo these
additively give us an algebraic torus of dimension N). The Euler
derivation of this vector bundle is a vector field on the universal
cover of each abelian variety. We shall have to think carefully of
why this vector-field which is not translation invariant has a leaf
which covers all but one point of a Riemann sphere in the moduli
space.
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VII q′-expansions

An H-invariant holomorphic function H → C for a positive power
of the cocycle c because it is Γ(2) invariant for the same cocycle
has an expansion as a power series in q where q = eiπτ and also
a power series expansion in q′ = eiπ

−1
τ and q′′ = eiπ(τ+1). We have

always brought calculations into the case when the power of c is a
multiple of 4 and the case of c4 is useful to look at. The differen-
tial form (

∑∞
n=−∞ qn

2
)4d log q is the same as the differential form

(
∑∞

n=−∞ q′n
2
)4d log q′. The residue of the first when q = 0 must be

1 and the residue of the second when q′ = 0 must be −1 The two
fourth power in the firt expression tends to 1 as q → 0 and in the
other tends to 1 as q′ → 0. In this sense it seems legal to speak of
‘the q-expansion’ without worrying whether we are using the vari-
able q or q′, or considering the cusp at 0 or at i∞. In this sense the
ring of big Witt vectors will be the same regardless of choosing q or
q′.

It is a worry whether the transform by STS−1 can really be ex-
pressed in terms of T 2 and S. From the relation STSTST = 1
we have STS = (TST )−1 = TST and multiplying by (T 2)−1 we
get TST−1 which is in our group H so STS and therefore ST and
STS−1 belongs. The transform by T 2 does not even change q. Per-
haps there is no need to worry about q′′ since its cusp cannnot be
transformed to the others using elements of H ⊂ PSl2(Z). That is
to say, one could write out the theta series of a lattice using q′′ as
a variable, and there might be difficulties interpreting the ring of
big Witt vectors among series in q′′ whose initial term is 1, but this
seems not to be possibly a serious worry.
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VIII. The bilinear form on W0.

By Eichler’s theorem every positive definite lattice decomposes uniquely
into a direct sum of indecomposable lattices so the Witt ring W0 has
canonical additive enerators. Its addition comes from direct sum
and multiplication from tensor product. For each M the element
c(M) ∈ Z[C] only depends on the underlying element w ∈ W and
induces a group homomorphism c : W0 → Z[[C]]× The rank homo-
morphism W0 → Z defines a second one; and the homomorphism
they define together is an abelian group map W0 → Z[[C]]× × Z.
The kernel A is the additive subgroup of W0 comprising formal dif-
ferences w − w′ represented by lattices W,W ′ with the same rank
and theta series. As always for an abelian subgroup of a ring, there
is a unique maximal element K among the ideals of W0 contained
in A.

For v, w ∈ W0 we may define ⟨v, w⟩ = θ(L⊗M, τ) where L,M are
lattices repreenting v, w. This defines a bilinear form, and a map of
commutative groups W0 ⊗W0 → Z[[C]]× × Z.

13. Lemma. The isotropy subgroup of the bilinear form is the
unique largest ideal of W0 contaied in A.

Proof. The isotrpy subgroup is the set of formal differences [L]− [L′]
where θ(L ⊗ M, τ) = θ(L′ ⊗ M, τ) for all M . Multiplying such a
formal difference by a class [N ] gives [L ⊗ N ] − [L′ ⊗ N ] we apply
associativity of tensor product (L ⊗ N) ⊗M ∼= L ⊗ (N ⊗M) and
also for L′.

Now we can improve the analytic map, we obtain

W0 → (Z[[C]]× × Z)W0

where the codomain the set of abelian group mapsW0 → Z[[C]]××Z.

14. Corollary. The image W of W0 under the improved map has
a well-defined Witt operation, which can be interpreted as a Chern
character theory, correctly distributing over multiplication.
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IX. Relation with existing Witt rings

The invariant c(M) is quite literally a divisor on P1 already, the
element 1

16
λ(1 − λ) is a rational function with two zeros and one

double pole (more symmetrically, a branched cover with ramification
indices 1, 1, 2) and the theory of the Chern character applies directly
and there is a Witt ring. Also the theta series of a lattice is always
a specialization of the Siegel theta series, it already comes from the
theta divisor on the moduli of abelian varieties, where again there is
a Witt ring. Thirdly, a positive definite rational integer lattice can
be interpreted as the structure on the first integer homology (which
is also the fundamental group) and its dual the first cohomology of a
real torus coming from choosing a flat Riemannian metric, and there
is a more general theory of the arithmetic of counting geodesics.
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X. Where are we now?

Up to now when the columns of a matrix M spans a lattice, we’ve
written θ(M, τ) for the theta series of the lattice, even while it only
depends on Q = M tM.

Important additional notation.

Now we will change notation, or, allow conflicting notation, that we
will allow ourselves to write θ(Q, τ) =

∑
v e

ıπvtQv where v runs over
integer column vectors of the appropriate size. This is what we had
previously called M tM.

Let’s define a two-variable theta series depending on square matrices
A,B which need not have the same size

θ(A,B) =
∑
M

eiπ trace(MtAMB)

where M ranges over integer matrices of the appropriate size. One
can take one of A,B to be real and the other negative definite where,
in the special case they do have the same size, it agrees with the
Siegel theta series. for convergence, as a formal series it is symmetric

θ(A,B) = θ(B,A).

The following proposition is notation for the theta series of a tensor
product

15. Proposition. If A,B are integer matrices then θ(A⊗ B, τ) =
θ(At, Bτ).

Proof.

θ(At, Bτ) =
∑
M

eiπτ trace(MtAtMB) =
∑
i,j,k,ℓ

eiπτ mj,iak,jmk,ℓbℓ,i

=
∑
i,j,k,ℓ

eiπτ mj,i(ak,jbℓ,i)mk,ℓ

=
∑
i,j,k,ℓ

eiπτ mk,ℓ(a⊗b)(k,ℓ),(j,i)mj,i
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If we take B symmetric real positive definite then θ(Btτ, A) =
θ(A,Btτ) = θ(A,Bτ) which is the Siegel theta series for a period
matrix A and the complex matrix Bτ with positive definite imagi-
nary part.

Thus

16. Corollary. The theta series of the tensor product of the posi-
tive definite latticess spanned by the columns of M,V is what we are
now calling θ(M tM,V tV τ), it is the Siegel theta series associated
with the period lattice spanned by the columns of M evaluated at
the point of Siegel half space consisting of the complex matrix V tV τ
with positive definite imaginary part.

The theta series of a tensor product of lattices is not mysterious
anymore. It is a specialization of the Siegel theta function.

To understand tensor products of unimodular lattices with other
lattices, we shall merely have to repeat the foregoing theory of half-
integer modular forms in the more general Siegel setting.

The Siegel theory has some built-in asymmetry, where one lattice is
considered to describe a point in half-space while the other describes
periods of an abelian variety, and some needless symmetry where
the size of A and B must be equal. There is perhaps no harm
in considering a pair of abelian varieties and it is no longer seeming
ridiculous to think that the Witt theory which we seek may relate to
the existing theory of characteristic classes in cohomology or sections
of vector bundles in algebraic geometry.

Also, switching the tenssor factors allows that we might study non-
unimodular lattices through how they behave under tensor product
with those which are unimodular. It is reminiscent of the comment
in the introduction that when M is a square size two integer matrix
with columns u, v the product M tM has entries like utv while the
product MM t is a sum of two non-interacting parts vvt and uut

Also, the more functorial version of theta series we were mentiioning
perhaps earlier, θ(L ⊗ (–), τ) which are functions assigning to any
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other lattice L′ the element c(L⊗M) ∈ Z[[C]]××Z are really nothing
new, just an updated or more functorial way of understanding the
Siegel theta series. And the ideal K ⊂ W0 which we found earlier
just comprises the set of formal differencese [L]− [L′] of unimodular
lattices whose Siegel modular forms agree on the subvariety com-
prising scalar multiples of real positive definite matrices by scalars
in the one-dimensional upper-half plane.
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X. Conclusion.

It not likely in the unimodular rational integral type context where
the modular forms technique applies directly, even for large N , that
µ(N) should actually equal to the minimum value of the coefficient
of eiπτ d(M) rather than just an upper bound. This is because forcing
Q to be integral removes any possibility of transcendental genericity,
and including the further condition det(M) = det(Q) = 1 does not
allow the ratios among entries of Q to have magnitudes tending to
{0,∞}. That is to say, it is not yet known whether a transcendental
deformation is needed to split off the meaningful stable part of the
coefficient.

Although the direct combinatorics of the projective planes question
is beyond computer calculation even in cases like n = 12 currently,
we have defined the mass of projective planes with N points which is
zero if and only if there are no combinatorial projective planes (not
even those allowed to fail Pappus’ and Desargues’ conditions) with
N points, and we have identified the mass as the minimum value as
M ranges of a particular coefficient of a power series (q-expansion)
which we have described in general terms, and shown when M is
unimodular and Q = M tM is rational integral type, the series is a
power of the classical theta function times the integer polynomial
c(M).

The homomorphism c from the underlying additive group of W0 to
Z[[C]]× × Z sends the class of each actual unimodular lattice to a
polynomial, the ‘characteristic polynomial’ c(w) ∈ Z[C] determined

by the number of lattice elements of length up to [
√

N/8] where N
is the dimension, paired with its dimension N.

We also gave the explicit coset formula for the θ series of a lattice
given a finite index lattice spanned by perpendicular elements, in
terms of the two-valued theta functions and only the coset represen-
tatives and lengths of the basic elements. And we gave direct for-
mulas for the theta series in terms of the characteristic polynomial
c(M) and for the characteristic polynomial in terms of the number

of lattice elements of distance up to
√

[N/8] from one fixed origin.
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While the additive span of the c(M) in Z[C] is a ring, the multi-
plicative ‘span’ of the c(M) in Z[C]× × Z, coming as it does from
all unimodular lattices is the one relevant to the problem of piec-
ing together the axioms of a combinatorial projective plane from
the disparate information coming from each particular choice of M ,
as we have outlined, and which may or may not require even more
genericity than requiring M to be positive unimodular. The kernel
A of W0 → Z[[C]]××Z is a subgroup and the largest ideal K in A is
the kernel of W0 → Hom(W0,Z[[C]]× × Z) which must then admit
a theory of Chern characters. For d(M) = N trace(M) + otMo ∈ Z
the coefficient of qd(M) in c(M)θN is an upper bound of the mass
of projective planes with N points. That is to say each unimodular
lattice of dimension N provides very explicit upper bound for the
mass of projective planes with N points in terms of the characteris-
tic polynomial, but we do not know if the minimum over unimodular
lattices is the precise mass. It will certainly be possible to extend
the detailed calculation beyond the unimodlar case and there, gener-
ically in M , the inequality is shown by us to be an equality which
calculates the precise mass in principle but less explicitly.
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