
Overview and a new conjecture.

Combinatorial group theory and Taniyama’s conjecture.

The curve Γ0(N)\H is not quite the curve which ‘parametrizes’ an elliptic curve.
Because a cusp form extends to a one-form on the smooth compactification there
is a normal subgroup M ⊂ Γ0(N) such that M \H is a contractible manifold (
a copy of H in fact), with infinitely many points deleted. And M \ Γ0(N) is a
surface group.

The homomorphism Γ0(N) → Z2 in Taniyama’s conjecture factorizes through
this quotient (M is contained in the kernel). A map Γ0(N)/M → Z2 describing
the map of compact real surfaces is bi-uniquely determined by an element of
H1(S,Z2) where S is the smooth compact surface; a choice of holomorphic one-
form on S amounts to a holomorphic function from the universal cover of S
such that each deck transformation amounts to adding a complex constant. If
those constants span a copy of Z2 ⊂ C we obtain an map from the universal
cover of S to the universal cover of an elliptic curve which is equivariant for a
map Γ0(S)/M → Z2, and it descends to a map from S to an elliptic curve.

This map is not a covering space, only a branched cover. So it is induced by an
equivariant map H → C but one which has branching.

Explicitly, if one takes the differential form (‘cusp form’) and pulls it back to H
it will be of the form f(τ)dτ, it must have zeroes at the limiting ‘cusps’ in order
to descend to a holomorpic form on S, but also f(τ) is allowed to have zeroes.

If we put things together in the simplest way, we obtain a map from H to the
elliptic curve, but it is branched over finitely many points of the elliptic curve.
The limiting ‘cusps’ that mapped to cusps of S do close up, but there are still
points deleted from H There is not simply, quite, a diagram of groups.

The strategy of applying Taniyama’s conjecture, first mentioned in Frey’s paper,
to the Fermat equation, while it is not directly enumerating subgroups of Γ, does
amount to generating a combinatorial list of elliptic curves defined over Q and
going through the enumeration (by ‘conductor’).

The elliptic surface

It is possible to extend the analysis above about the Fermat fiber to the elliptic
surface lying over it; it seems better, rather than using a Weierstrass/Neron
model, to use the compact model corresponding to the homogeneous equation
z4 + s2z

2 − s3z which is the product z − ei, i=1,2,3,4, when e4 = 0 and e1 +
e2 + e3 = 0. We set ei = xpi . However, the different element of the whole elliptic
surface is just the pullback from the Fermat fiber anyway, and it is my belief
that the interesting aspect of the Fermat equation lies in the fiber.
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The Fermat fiber

The different element of the fiber is the section of L⊗(13p−3) described by
p2(xyz)p−1 · 6s22(xp, yp, zp)s3(xp − yp, yp − zp, zp − xp)s3(x

p, yp, zp).

Although for Hellegoauarch the ‘Roland’s horse’ was an elliptic curve, for me
the ‘Roland’s horse’ is the fact that corresponding ratios among nine elements
of the local ring of J/(Jq) at a maximal ideal have divisibility modulo associates
satisfying the axiom of a total ordering.

When we looked at other intersections we found that it is possible to satisfy the
smoothness condition ‘locally,’ what goes wrong at one prime can be corrected
by changing a, b, c but then something else goes wrong at another prime.

Because for a, b, c coprime and p odd the equation ap + bp + cp ≡ 0 mod(abc)p

implies a Fermat counterexample, and this is an equation in a ring that splits
according to the prime factorization of abc, it is possible to formulate the Fermat
equation, or, just the question of existence of rational solutions, as a condition
about a disjoint union over primes.

The same type of unenlightening observation occurs for the intersection of com-
ponents having to do with transpositions or multiplying entries by roots of unity.

But here, in the case of the rotations, there is what may be a substantial con-
dition on a single prime.

In the case of a prime power divisor of a, one found only that the local ring
at a four-fold intersection having to do with a transposition and roots of unity,
modulo q times that ring, becomes a discrete valuation ring when the valuation
of ap and of bp + cp at the prime become incomparable. In fact, the incompara-
bility is just a reformulation of saying that the full power of that prime which
divides ap must either divide one of the coprime parts a+ b or ap+bp

a+b

But for the rotation case, there is no such disappointingly transparent or direct
reformulation of the Fermat equation which relates to the divisibility ordering
of ratios of nine determnantal minors.

The fact that the issue is local makes it hard to experiment. As far as I can see,
we really would need a Fermat counterexample to construct the local ring at
the three-fold intersection corresponding to a rotation. The issue is, each time
we consider a number like apbp − c2p which is the product of all ab − ωjc2 we
rewrite it as s2(a

p, bp, cp) − cp(ap + bp + cp) and the first factor is symmetric,
constant on all components, the second factor zero by the Fermat hypothesis.
We can find a common prime divisor of all such expressions by merely choosing
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a prime divisor of s2(a
p, cp, cp). But it is not so easy to find a common prime

divisor of apbp − cp, bpcp − ap, cpap − bp, it is impossible, and the issue is, is it
the case that it is impossible because otherwise the divisibility relation among
the determinantal minors modulo associates would need to be a total ordering,
and this violates some type of symmetry?

Examples.

For the first example, let’s illustrate a typical tensor decomposition of a subring
of Z3 when we reduce the subring modulo a prime(what I have been on about).
Consider the subring of Z3 generated by α = (5, 0, 0) and β = (0, 5, 0). The
relations

α2 = 5α, β2 = 5β, αβ = 0

hold. If we reduce the subring modulo five we have the relations of a tensor
decomposition,

0 = α2 = αβ = β2.

We will exhibit this type of phenomenon at three components of the Fermat
fiber where they meet at a closed point fixed by a cyclic permutation of (a, b, c).

We cannot actually choose a, b, c such that ap + bp + cp = 0, so we make a
simulated example which will reduce correctly modulo q = 31, having chosen
this prime so it is congruent to 1 modulo 5 and 3. a primitive fifth root of unity
modulo 31 is 2 and a primitive cube root is 5.

We start with ascending powers of 5 so we use

1, 5, 25

and we take a to be our primitive fifth root

a = 2.

Now we take b, c to be other fifth roots times our powers of 5 so

b = a · 23 · 5 = 80

c = a · 22 · 52 = 200

We modify these without affecting the residue class modulo 31 to make them
coprime

b = 49

c = 45

Thus a, b, c, p = 2, 49, 45, 31. Then our sections x, y, z restricted to our three
components are

(a, bω2, cω3)
(bω2, cω3, a)
(cω3, a, bω2)
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These can be viewed as sections of L or as elements in the normalization.

Since it is computationally expensive to do the actual calculation we just spe-
cialize ω to 10945 which is 2 raised to a high power of 31 and reduced modulo
a high power of 31. This is because we have to be careful not to reduce modulo
q times the normalization. The reduction of the subring modulo q = 31 is such
that all three components meet pairwise as we expect

and the algebra of dimension 3 over F31 is indecomposable but not tensor inde-
composable

And here is the matrix representation of that algebra
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In these calculations Z[ω] has been replaced by Z, replacing ω by 10945 to
reduce computation time.

Note that this example has a special property by construction, that the ratios
among a, b, c could simultaneously be specialized to p’th roots of unity. The
Fermat hypothesis and assumption that q is a divisor of s2(a

p, bp, cp) do not
imply that this is the most general situation.

Construction of a ring J

Assume ap + bp + cp = 0 for a, b, c pairwise coprime, p any prime number.

Make the matrix  a b c
b c a
c a b


Multiply each entry by a formal symbol, representing a p’th root of unity so we
obtain  aωr bωs cωt

bωi cωj aωk

cωl aωm bωn


for r, s, t, i, j, k, l,m, n ∈ Z/(Zp).

Call the rows x, y, z.

There is an affine scheme Spec(J), it is Spec of the Z span of monomials in
x, y, z of degree congruent to 0 mod 6p. It is a subscheme of the Fermat curve.

There is a scheme L mapping to Spec(J)

π : L→ Spec(J).

It can be constructed as Spec of the symmetric algebra of L⊗−1 over J, it is a
line bundle.
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The global sections of L are faithfully represented as the Z span of monomials
of degree ≡ 1 mod 6p in x, y, z.

A section of L means a map s : Spec(J) → L such that π ◦ s = identity.

We fix one section s whose intersection with Spec(J) we decree is defined by
the Cartier divisor of x. It is two subschemes of L meeting.

For any homogeneous polynomial of degree congruent to 1 mod 6p we get an-
other section, for instance x, y, z of degree 1 give us rational functions 1 =
x/x, y/x, z/x and when we multiply by s we get s, (y/x)s, (z/x)s which have
no pole since s has a zero at x.

While the polynomials x, y, z are sections of L, we have to multiply by s
x , treating

it as a formal symbol.

Remark about naturality

We can consider the global sections sheaf L as an ordinary module, it is the
Z-span of monomials of degree congruent to 1 modulo 6p in the three elements
x, y, z of Z[ω]3 (or we may use 3p now since we’ve passed to a subgroup). It is a
rank-one projective module, and the way an element of this module determines
a Cartier divisor can be described just using a principle of naturality: that for
an element s ∈ L the quotient module L/(sL) is locally cyclic, and hence its
endomorphism ring is locally isomorphic with the module itself. The coordinate
ring of the subscheme of Spec(J) ⊂ L where s meets the zero section is Spec of
that endomorphism ring.

Contextual Remark. Choosing a meaning of the formal symbol is done in a
different way in each column of the matrix; the issue of naturality turns into
one of symmetry, which is familiar from many places. IBM is mixing two mi-
crowave beams to get a point of C2, then reducing modulo scalars to crate a
Bloch sphere labelled by the hardware with 0, 1,∞. The purpose of a qubit
might be to remove a favoured choice of basepoints; the hardware framework
does specify one basis. The complement of digital computing does contain some
magic. In Schroedinger’s equation it relates to the ambiguity when we refor-
mulate something real in complex language. The same notion in the past led
some people to incorrectly believe complex conjugation might have been natu-
ral or intrinsic, that it could be used to define zeroes of zeta functions. This
is because of wanting a formalism to be there, not caring where it comes from.
Rather, forgetting, as we necessarily must, their original appeal to nature. Ge-
netic codes, a type of phrenology, have the same well-recognized analogy with
computer code; now with an instruction set among proteins expressed by the
developed organism with more complexity than genetics has, which extends
beyond quantum theory and beyond chemistry, the relation balanced during
evolution among massive amounts of data, even symbioses and the long term
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effects of social data and thinking, as Darwin contemplated so wonderfully. So
it is not like we could know the instruction set, and this is obvious if you think
of any way intentionality could have evolved. To the extent technology provides
unprecedented choices, the choices can can only be approached based on the
inescapable and false biological assumption that the consequences would have
taken place pre-technology. Physics was involved with least-squares perturba-
tion theory, consecrated into Hilbert space theory and unitary matrices, which
are considered to act on the sphere as if it were a rigid planetary object, not
even reaching the historical development of map projections. Each line in an
emissions spectrum is labelled by a pair of term symbols, and there is almost
never any ‘electron’ which has undergone a ‘transition.’ Seeing that there is no
Fermat solution is reminiscent of how there is no single electron, it is reminiscent
of the failure of Galois symmetry when a cube root of 2 is adjoined to Q, except
‘not Galois’ is specific to multiple solutions; for a single solution one includes
nilpotency.

The sections of L comprise a coherent sheaf L on Spec(J). The global sections
of L are a copy of homogeneous polynomials of degree cngruent to 1 mod 6p.
Most people would call them ‘global sections of L’ and omit writing L.

Since we are on an affine scheme, we need not worry about the sheaf structure
of L, we can think of it as a rank one projective module over J, and J itself is
spanned over Z by monomials in x, y, z of degree congruet to 0 mod 6p.

We can think algebraically if we like, the normalization of J is just a cartesian
product of 3 rings, each Z or Z[ω] depending on how we assign the roots of
unity.

There is a type of relativity when we assign roots of unity, we can think of the
roots of unity as a torsor over Aff (µp) and so we view the action of Aff(µp) as
inconsequential. In articular if we assign all entries of a column to ωi with the
same i, we can translate them to i = 0 and the component of the normailzation
will be just Z.

If we included a column with every possibility of permuting a, b, c and assigning
roots of unity, one for each of p + 2 orbits of Aff(µp) on µ3

p we would have a
matrix of 6p+12 columns and 3 rows which would be 3 elements of Z6xZ[ω]6p+6,
the normalization would be rank 6p2 over Z as the ring itself is and that ring
would be the coordiinate ring of the fiber in the Fermat curve over one lambda
value.

By including just 3 columns, we are selecting 3 components and looking at
the coordinate ring of the image of the map from the disjoint union of their
normalizations to J.

We are interested in the scheme defined by s2(x
p, yp, zp) ∈ L⊗2p a section of
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L⊗2p. Because the polynomial is symmetric it is the same as the subscheme
defined by the rational integer s2(a

p, bp, cp).

We will work in a neighbourhood of this subscheme, this means we can work
where a, b, c are nonzero because abc is coprime to s2(a

p, bp, cp).

Because we assume ap + bp + cp = 0 so is its square so 0 = (a2p + b2p + c2p) +
2s2(a

p, bp, cp)

This means |s2(ap, bp, cp)| ≥ 1
2 (a

p)2 + (bp)2 + (cp)2).

It is a negative number of quite large magnitude.

When we look at the size two determinantal minors of our matrix we get ex-
pressions which are a root of unity times

ac− ωjb2

for various j, and their transforms under permuting a, b, c, these are divisors of
apcp − b2p.

Consider the number
apcp − b2p

Add the other two terms of s2 to the first summand and subtract from the
second

= apcp + cpbp + bpap − (b2p + cpbp + bpap)

= s2(a
p, bp, cp)− b2p(ap + bp + cp)

The Fermat assumption thus tells us that the polynomial expression we are
interested in is symmetric, it is just a symmetric polynomial

apcp − b2p = s2(a
p, bp, cp).

This means, if we choose a prime divisor q of s2(a
p, bp, cp) and choose a prime

Q in Z[ω] lying over q, there must be a j such that apcp − ωjb2p ∈ Q

And, the same is true upon permuting a, b, c although the value of j might
change.

There is a relation among the nine size two minor determinantal minors, once
we reduce them modulo Q and interpret the entries as in a field. All nine
determinantal minors are zero if and only if the four which correspond to deleting
first or last row or column are zero. This is because for nonzero vectors pairwise
linear dependence is an equivalence relation.
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These four determinantal minors can be controlled, the roots of unity attached
to the four corner entries of the matrix belong each to exactly one of the sub-
matrices.

The fact that q is a common divisor of apbp − c2p and its transforms under
permuting a, b, c (which happen to all be equal) impies that once we know from
the divisibility of Q that there is some choice of root of unity to put in each
corner to make each of the four minor determinants zero in a residue field,
we also know by independence of the four corners (each contained in just one
size two submatrix) that there is a choice which makes all four, and hence all
nine, simultaneously zero; and what this implies is that we can choose 3 of the
6p+ 12 components of the Fermat fiber which intersect at a closed point lying
over q ∈ Spec(Z).

We have allowed ourselves to take Q to be the ‘same’ prime ideal in each non-
rational component of the normalization, and think of ourselves adjusting the
multiplier roots of unity by choosing three components to make all four deter-
minantal minors belong to that same prime ideal. So we can think of our matrix
as a matrix with entries in just one copy of Z[ω], and we can think that we have
fixed one prime Q lying over q, and we just choose the components to make the
matrix modulo Q have rank 1.

Now let’s see if we can build the tensor decomposition. For this, we will look at
the rational functions x/y, y/z which are well-defined in a neighbourhood of the
subscheme defined by q. These generate the coordinate ring of a neighbourhood
of the locus of interest, because from these we can obtain (x/y) · (y/z) = x/z,
and y/z.

These are
(abω

r−i, bcω
s−j , c

aω
t−k)

( bcω
i−l, c

aω
j−m, abω

k−n)
.

The conditions for tensor decomposition modulo q.

The choice of r, s, t, i, j, k allows us to choose a prime ideal Q of Z[ω] containing
q such that the inverse image of Q under each of the three projections is one
and the same maximal ideal Q in the ring J generated over Z by the two rows
shown above. We will localize J at Q to obtain a local ring JQ and consider
what conditions control whether JQ/(qJQ) has its maximal ideal principal.

Since some determinantal minors are repeated, we will show that we can simul-
taneously arrange this when l,m, n are just i + j − s, j + k − t, k + i − r. We
retain the properties we have discussed so far, so that a single ideal Q of J is
the inverse image of Q under the projection to each component; but in addition
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gain the property that each of the three entries of x/y − y/z belongs to Qm

times Z[1/(abc)]. Thus in Spec(J) we have three components meeting at one
closed point, which is is the image of either Q or its intersection with Z under a
map Spec(Z) → Spec(J) or a map Spec(Z[ω]) → Spec(J) for each of the three
components.

In the case of two components meeting at a point there would be no contra-
diction, for instance if I take Z[x, y] modulo relations x2 = 5x, y2 = 5y, xy =
0, x+ y = 5 we find it is just isomorphic to Z[x] with relation x2 = 5x and the
reduction modulo 5 is F5[x]/x

2 which has no tensor decomposition.

It is possible to have three components meeting at a point without having a
nontrivial tensor decomposition of JQ/(qJQ).

Here are some basic remarks

Remark. The algebra JQ/(qJQ) contains a subring reducing isomorphically to
the residue field JQ/(QJQ).

Proof. Because of Artin-Rees there is some N such that QNJQ ⊂ qJQ. It is
standard that the algebra JQ/(QJQ)N contains a copy of its residue field and
the desired algebra is a homomorphic image.

Remarks.

i) A necessary and sufficient condition, in our situation, for JQ/(qJQ) to
have a nontrivial tensor decomposition is that Q2 ⊂ qJQ.

ii) A necessary and sufficient condition for the algebra not to have any non-
trivial tensor decomposition over the subring isomorphic to the residue
field is that every generating set of as an algebra over that field contains
a single element which generates that algebra over its residue field.

Proof. Let k denote the completion of Z[ω] at Q so that J is a subring of k3. The
reduction of the image modulo qN (k3) contains the reduction of the diagonal k,
and since by Artin-Rees we only care about the image for some large N we can
replace J with the algebra generated by J and the diagonal k. Another way of
seeing this is, the completion of J at Q attains an unramified extension which
increases its residue field to match that of k.

Rather than try to apply these conditions directly, It simplifies things a bit if
we pass to completions. Let k be the completion of Z[ω] at Q. By Artin-Rees
there is an N so that QNJQ ⊂ qJQ, so it does not make any difference whether
we complete JQ at QJQ or at qJQ. The completion of J embeds in k3.
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If q ≡ 1mod p, which is the main case we consider, then the diagonal k(1, 1, 1) is
already contained in the completion of J, and the completion of J is a submodule
for the underlying k-module structure of k3.

In general, we can consider the sub-k-module of k3 generated by J, it is a
subalgebra of k3 containing the diagonal k.

In passing from the completion of J to the sub-k-module it generates, the residue
field of J increases from the prime field to the residue field of k.

We are interested in the Fq-algebra JQ/(qJQ), and whether it has a nontriv-
ial tensor decomposition. Because by Artin-Rees it is a homomorhic image of
JQ/(QJQ)

N for some N , and that algebra contains a ring reducing isomorphi-
cally to its residue field, the same is true of JQ/(qJQ).

The map from the completion of J to the sub-k-module of k3 spanned by that
completion becomes an isomorphism once we reduce both algebras modulo q,
therefore.

The sub-k-module of k3 generated by the completion of J is also, incidentally,
just generated by J itself. It is a free module of rank three. It contains the k-span
of (1, 1, 1) and so it has a k-basis consisting of (1, 1, 1) together with two addi-
tional elements, which can be taken to be either of the form qi(1, α, 0), qj(1, β, 0)
or of the form qi(1, α, 0), qj(β, 1, 0). To see this, first subtract a multiple of
(1, 1, 1) from each of the two other basis elements make the third entry zero,
then divide out the highest possible power of q so one entry is a unit, and finally
divide by that unit.

There is an amusing process of performing a cyclic rotation. Writing α = uqs

for u invertible, From (1, uqs, 0) we can subtract (1, 1, 1) to obtain (0, uqs −
1,−uqs) = (0, 1, u

1−uqs q
s) which is of the form (0, 1, vqs) for a unit v. There is

also an amusing process of interchanging the two entries of highest order (taking
0 to be order infnity). That is, from (1, uqs, 0) we subtract uqs(1, 1, 1) to obtain
(1 − uqs, 0,−uqs) and multiply by a unit to obtain (1, 0, −u

1−uqs q
s) which is of

the type (1, 0, vqs).

Combining these processes, we can obtain a basis consisting of (1, 1, 1), qi(1, α, 0), qj(1, β, 0).
we may assume i ≤ j by interchanging the labels α, β and then we can subtract a
multiple of one from the other to arrive at (1, 1, 1), qi(1, α, 0), qj(0, β, 0). Finally
we can increase j and multiply β by a unit to arrive at (1, 1, 1), qi(1, α, 0), qj(0, 1, 0)
with j ≥ i. Closure under multipication is equivalent to the notion that the
square of the second basis vector is in the span of the three, which is the same
as saying it is in the span of the last two. From (q2i, q2iα2, 0) we subtract
qi(qi, qiα, 0) to get ((0, q2iα(α − 1), 0) and for this to be a multiple of (0, qj , 0)
we need j to be no larger than the order of the middle term, which is 2i plus the
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order of α. Since we are assuming that the algebra is closed under multipication,
we know then that j ≤ 2i+ vq(α).

Now we know the structure constants of the algebra, the action of multiplying
by the two nontrivial basis elements is a multiple of q if and only if the inequality
is strict.
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Theorem. The algebra JQ/(qJQ) admits a nontrivial tensor decomposition
over a field if and only if the subalgebra of the complete algebra k3 which it
spans over k, when given a basis (1, 1, 1), qi(1, α, 0), qj(0, 1, 0) for i ≤ j satisfy
j < 2i+ vq(α). Otherwise j = 2i+ vq(α).

Example. The subring of Z5 with basis (1, 1, 1), (25, 125, 0), (0, 625, 0) when the
subring is reduced modulo 5 is tensor decomposable, that with basis (1, 1, 1), (25, 125, 0), (0, 3125, 0)
when the subring is reduced modulo 5 is tensor indecomposable, and the commu-
tative group with basis (1, 1, 1), (25, 125, 0), (0, 15625, 0) is not a subring. Tensor
indecomposability occurs when the third basis element is (0, 1, 0) multiplied by
the highest power of 5 which still allows closure under multiplication, which is
the order of the product of the entries of the basis element (25, 125, 0).

We can sharpen the argument a bit.

Theorem. Let k be a complete discrete valuation ring, and consider any two
elements of k3 which form a linearly independent set together with (1, 1, 1). The
linear span of the three elements has a basis of the form

(1, 1, 1), (α, β, 0), (0, γ, 0)

such that α, β, γ have strictly positive valuation (lie in the maximal ideal), while
β/α and γ/α are integral (have valuation greater than or equal to zero)

i) If γ/(αβ) is in the maximal ideal (has valuation greater than or equal
to 1 then the span of the three original elements is not a subring, never-
theless the ring which they generate is also generated by just the single
element (α, β, 0). If we call the subring J , then the tensor product of J
with the residue field k is isomorphic to k[T ]/(T 3) generated by the image
of (α, β, 0).

ii) If γ/(αβ) is invertible (has valuation zero) then the three original elements
do span a subring, and it is still true that it is generated by the single
element (α, β, 0). The tensor product of the subring with the residue field
k is also in this case isomorphic with k[T ]/(T 3).

iii) If γ/(αβ) is not integral (has strictly negative valuation) then the span
of the original three elements is a ring, and that ring is also generated by
(α, β, 0) and (0, γ, 0). Moreover both elements are nilpotent of order two.
The tensor product of the subring with the residue field is isomorphic with
k[X,Y ]/(X2, XY, Y 2).
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Application to the complete subring

Let’s apply these considerations to the subring of k3 generated by J. It is the
subring of the complete ring k3 generated by x/y and y/z and each component of
the difference has the same orderm at q as the elementary symmetric polynomial
s2(a

p, bp, cp) at q.

Since we now are working over k in k3 we can interpret the roots of unity in
the 3-tuples which represent x/y and y/z as elements of the base ring k. Recall
these are

(abω
r−i, bcω

s−j , c
aω

t−k)

( bcω
i−l, c

aω
j−m, abω

k−n)
.

Because the entries of x, y, z were in close proportion, we know that any of the
six entries shown above is congruent to 1 modulo Q.

Note that there is no requirement that m = r, for example, so it is not required
that we can absorb the roots of unity into the letters a, b, c.

Let us follow our prescription in the previous theorem so we divide each element
by its last entry and subtract (1, 1, 1) to obtain

(a
2

bcω
r−i−t+k − 1, bac2 ω

s−j−t+k − 1, 0)
b2

acω
i−l−k+n − 1, bc

a2ω
j−m−k+n − 1, 0)

Incidentally, the superscripts in the second row are uniquely determined modulo
p to make particular minor determinants of the original matrix belong to Q and
because the entries a, b, c occur in more than one location, we already know

i− l − k + n = i− r − j + s

j −m− k + n = t− r + i− k

modulo p so we can write this as

(a
2

bcω
r−i−t+k − 1, bac2 ω

s−j−t+k − 1, 0)
b2

acω
s−j−r+i − 1, bc

a2ω
−r+i+t−k − 1, 0)

We now know that each nonzero entry has valuation exactly m where m is the
order of s2(a

p, bp, cp) at q. To create γ we make a linear combination of these
rows which has zero in the first entry to obtain (0, γ, 0)

One way to do this is to cross-multiply such that γ is the determinant of the
matrix made from the four entries, which is
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(
a2

bcω
r−i−t+k − 1 ba

c2 ω
s−j−t+k − 1

b2

acω
s−j−r+i − 1 bc

a2ω
−r+i+t−k − 1

)

The first entry of each three-tuple is a multiple of qm and we can do better by
dividing each entry by qm, this gives the determinant of the matrix above but
with the entries in the first column divided by qm, and that is our value of γ
such that (0, γ, 0) is a linear combination of the two three-tuples shown with
unit coefficients. The pair of units can be complemented to make an invertible
matrix and hence we have as generators either of the two three-tuples shown
above together with q−m times the determinant of the matrix shown.

If the determinant has order 2m (the same as each of the two binomials which
make it up) then γ will have order m and α, β, γ will satisfy the condition guar-
anteeing a tensor decomposition of JQ/(qJQ). On the other hand, if there is
sufficient cancellation in the determinant formula that the order of the deter-
minant reaches 3m so the order of γ reaches 2m the tensor decomposition will
merge and fail, and we will have no contradiction.

We can multiply each row by an invertible element to arrive at(
a
bω

r−i − c
aω

t−k b
cω

s−j − c
aω

t−k

b
cω

s−j − a
bω

r−i c
aω

t−k − a
bω

r−i

)
. Setting

A =
a

b
ωr−i

B =
b

c
ωs−j

C =
c

a
ωt−k

this becomes (
A− C B − C
B −A C −A

)
which has determinant

−A2 + 2AC − C2 −B2 +BA+BC −AC

= AB +BC + CA−A2 −B2 − C2

The choice of r, s, t, i, j, k has arranged that A,B,C occupy the same residue
class modulo Qm but any pair is distinct modulo Qm+1. If we trace back the
reason it is because each difference times a unit is a divisor of an expression that
is invariant under permuting a, b, c with the other factor invertible and which
has order precisely m at q.
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The very strict condition which we’re considering is just a necessary consequence
of the Fermat equation, and smoothness of the Fermat curve away from the locus
defined by p.

Smoothness of the Fermat curve requires that expression above to belong to
Q3m, while it is expressed as a difference of two terms in Q2m.

If we write each of A,B,C as a 3p root of unity τ plus an error term, then the
differences like A−B amount to the differences of the error terms. Write

A = τ + qmα

B = τ + qmβ

C = τ + qmγ

and then our determinant (A− C)(C −A)− (B −A)(B − C) is

q2m((α− γ)(γ − α)− (β − α)(β − γ))

= q2m(αβ + βγ + γα− α2 − β2 − γ2).

From ABC = τ3 we have

τ3 = (τ + qmα)(τ + qmβ)(τ + qmγ)

= τ3 + qm(α+ β + γ)τ2 + q2m(αβ + βγ + αγ)τ + q3mαβγ.

This shows
α+ β + γ ∈ Qm,

from this

2(αβ + βγ + αγ) + α2 + β2 + γ2 = (α+ β + γ)2 ∈ Q2m.

The Fermat smoothness condition (failure of tensor decomposition modulo q)
was

αβ + βγ + γα− α2β2 − γ2 ∈ Qm.

This is equivalent to
3(αβ + βγ + γδ) ∈ Qm,

then. This shows when q = 3 there is never a tensor decomposition mod q. As
long as q ̸= 3 this is equivalent to

αβ + βγ + γδ ∈ Qm.

This is useful now as in our earlier equation involving τ3 the lack of tensor
decomposition modulo q is (for q ̸= 3) equivalent to α+ β + γ ∈ Q2m. And this
is equivalent to

1

3
(A+B + C) ≡ τ modQ2m.

This implies that there is a j such that

(
1

27
(A+B + C))3 ≡ ωj mod Q2m.
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We can explicitly remind ourselves what A,B,C are, they are multiples of the
forward ratios a/b, b/c, c/a by p’th roots of unity to make all three mutually
congruent modulo Qm, and then the failure of tensor decomposition modulo q
enforces that the average

Thus,

Theorem. Suppose ap + bp + cp = 0 with p prime and a, b, c pairwise coprime.
Let ω be a primitive p’th root of unity. Let q be a prime divisor of s2(a

p, bp, cp)
and let m be the order of s2(a

p, bp, cp) at q. It is possible to multiply each
forward ratio a/b, b/c, c/a by a p’th root of unity in Z[ω] to make all three
mutually congruent modulo Qm for Q a prime ideal of Z[ω] lying over q, and
none congruent to a 3p root of unity modulo Qm+1. Call these elements A,B,C
(so that each of A,B,C is one of the forward ratios a/b, b/c, c/a times a p’th root
of unity). There is a corresponding local ring JQ of the subscheme of the Fermat
fiber over its j value consisting of three irreducible components meeting at a
point. (Note Q is not quite the same as Q). Smoothness of the Fermat curve
implies that for q ̸= p the algebra JQ/(qJQ) must be tensor indecomposable
(not nontrivially a homomorphic image of a tensor product over a field). Tensor
indecomposability of that ring automatically holds for q = 3; and for q ̸= 3 it is
equivalent to the condition that 1

27 (A+B+C)3 is congruent modulo the higher
power of Q2m to a power ωj in Z[ω], in other words that in the completion
k of Z[ω] at Q there exists a j ∈ {0, 1, 2, ...p − 1} and an x ∈ k such that
1
27 (A+B + C)3 = ωj + q2mx.

Strategy to calculate the determinant

Let’s name the particular p’th roots of unity ω1, ω2, ω3 such that

A =
a

b
ω1

B =
b

c
ω2

C =
c

a
ω3.

There is no requirement that ω1ω2ω3 should equal 1, rather they are chosen so
that A,B,C are mutually congruent modulo Qm.

However, we can write
B = A+ qmϕ

C = B + qmψ

for ϕ, ψ ∈ k where k is the localization (or we may take the completion here) of
Z[ω] at Q. Or we may even use Z[ω] with 1

abc adjoined.
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Then
Bp = Ap + (Bp −Ap)

= Ap − 1

bpcp
s2

where by s2 we mean s2(a
p, bp, cp) = apcp − b2p; and

Cp = Ap + (Cp −Ap)

= Ap +
1

apbp
s2

where now s2 = cpbp − a2p. But we may also raise the earlier equations to the
p’th power

Bp =

p∑
i=0

(
p
i

)
Ap−iqmiϕi

Cp =

p∑
i=0

(
p
i

)
Ap−iqmiψi.

Combining

− 1

bpcp
s2 =

p∑
i=1

(
p
i

)
Ap−iqmiϕi

1

apbp
s2 =

p∑
i=1

(
p
i

)
Ap−iqmiψi.

As congruences modulo Q2m we have

− 1

bpcp
s2 ≡ pAp−1qmϕ

1

apbp
s2 ≡ pAp−1qmψ

Then since

Ap−1 = ω−1
1

ap−1

bp−1

we have as congruences modulo Qm

ϕ ≡ − 1

bpcp
s2
qm

ω1
bp−1

ap−1
p−1

ψ ≡ 1

apbp
s2
qm

ω1
bp−1

ap−1
p−1

Also

ϕ− ψ ≡ −ap − cp

apbpcp
s2
qm

ω1
bp−1

ap−1
p−1
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Since −ap − cp = bp

ϕ− ψ ≡ 1

apcp
s2
qm

ω1
bp−1

ap−1
p−1

The determinant is q2m(−ψ2 − ϕ(ϕ− ψ)) with the second factor a unit times

−1

a2pb2p
+

1

bpcpapcp

=
−apbpc2p + a2pb2p

a3pb3pc2p

=
apbp − c2p

(abc)2p

=
s2(a

p, bp, cp)

s23(a
p, bp, cp)

This has order precisely m at Q confirming that the determinant has order 3m,
so our third generator (0, γ, 0) has that the order of γ at Q is indeed equal
to 2m precisely, confirming as we knew that the span of our elements is closed
under multiplication and however showing that tensor indecomposability can be
derived directly from polynomial algebra and is not an independent conddition.

What we have shown is that each of

(a
2

bcω
r−i−t+k − 1, bac2 ω

s−j−t+k − 1, 0)
b2

acω
s−j−r+i − 1, bc

a2ω
−r+i+t−k − 1, 0)

is contained in the algebra over k generated by the other.

A case of more than four components

Let’s return to the case when a is a multiple of q. When we consider more
than four components, here is what we find. Call a component ‘rational’ if our
Aff(Fp) representative is (0, 0, 0) and ‘quasi-rational with respect to q for q a
divisor of a if its representative is (0, 1, 1). Then I will state without proof, but
what I have checked,

Theorem. Let q be a prime divisor of a and assume q is a divisor of the
difference quotient bp−1 − cbp−2... + c (and therefore not a divisor of b + c) .
There are 2(p − 1) maximal ideals of J containing q. The p − 1 prime ideals
lying over q in the quasi-rational components which we may label by (a, bω, cω)
all contract to a single prime ideal of J – the same one as comes from the
rational component (a, b, c), that is, the inverse image of qZ under the projection
J → Z on the corresponding rational component. The p − 1 prime ideals in
each non-quasi-rational and non-rational component across the transposition
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interchanging b and c we may label (a, cωi, bωj) for (0, i, j) one of our Aff(Fp)
orbit representatives in F 3

p contract one each to one of p− 1 maximal ideals of
J lying over q. One of these p− 1 maximal ideals is the same one coming from
the rational component (a, b, c). Symmetrically opposite, the non-rational and
non-quasi-rational (a, bωi, cωi), p in number, each have p − 1 maximal ideals
mapping to p − 1 new maximal ideals of J and one of these is equal to the
contration of both the rational (a, b, c) and quasi-rational (a, bω, cω) component
across the transposition.

If we want to be precise about specifying maximal ideals in J and also using
our Aff(Fp) orbit representatives, we can be explicit about the automorphism
bringing each prime in each component of the normalization into a standard
position, that is, we will specify a nonzero i ∈ Fp for each component, and
explicitly replace ω by ωi. Thus when q is a divisor of a and we have our p+ 2
components meeting at a point with

x = (a, a, a, a, a, a, ...a)
y = (b, bω, c, cω, cω, cω, ..., cω)

z = (c, cω, bω, b, bω2, bω3, ...bωp−1)

(and note crucially the term bω is correctly removed from the sequence), we
assume ω as it is in the third component of z is chosen to make b2ω− c2 belong
to a particular maximal ideal Q in the third component containing q, and then
we raise ω in every subsequent component of y and z to a suitable power that the
maximal ideal which we would label with the name Q in the other components,
using whatever was our initial labelling of ω, is the one containing the minor
determinants as if we could have identified all components using our original
arbitrary labelling.

This means we should now write

x = (a, a, a, a, a, a, ...a)

y = (b, bω, c, cω(0−1)−1

, cω(2−1)−1

, cω(3−1)−1

, ..., cω(p−2)−1

)

z = (c, cω, bω, b(ω(0−1)−1

)0, b(ω(2−1)−1

)2, b(ω(3−1)−1

)3, ...b(ω(p−2)−1

)p−1)

Here the sequence (0 − 1)−1, (2 − 1)−1, (3 − 1)−1, ... which is correctly missing
the case of 1 − 1 refers to the inverses in Fp, and runs through the nonzero
elements of Fp. To see how this works, if we look at the last entry of z

y we get

ω
p−1
p−2 divided by ω

1
p−2 with the exponent ratios calculated in Fp, and the ratio

is ω
p−1
p−2−

1
p−2 = ω a constant ratio throughout all but the first two entries, which

is what ensures all components meet at the maximal ideal which is the pullback
now of what we would call the same maximal ideal on each component (based
on our original and unchanged labelling of one of the primitive p’th roots of
unity on each component with the name ω).

Of course ω(0−1)−1

is just ω−1 and its zero’th power is 1.
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Generators over the local ring of Z at q of J are now x
y and z

y and these are also
a pair of generators

b
x

y
= a · (1, ω−1,

b

c
,
b

c
ω− 1

p−1 ,
b

c
ω− 1

1 ,
b

c
ω− 1

2 ,
c

b
ω−1/3, ...

c

b
ω− 1

p−2 )

c

b

z

y
= (1, 1,

c2

b2
ω,
c2

b2
ω, ...,

c2

b2
ω).

Again, ω− 1
p−1 is just ω but the expression shows that the last p entries bxy just

consist of a · c
b multiplied by every possible p’th root of unity while the last p

entries of c
b
z
y are constant c2

b2ω.

We can interpret the entries now as if they were in one copy of Z[ω] and when
we subtract the constant (1, 1, 1...) from c

b
z
y the choice of ω is the one which

makes all entries belong to one and the same maximal ideal of Z[ω], determined

by the congruence b2

c2ω ≡ 1.

Now as q is a divisor of b − c as long as q is not 2 it cannot be a divisor of
bp − cp as it is already a divisor of bp + cp = ap. Then from b2ω ≡ c2 we have
b2p − c2p = (bp − cp)(bp + cp) ≡ 0 so bp + cp ≡ 0 and from our assumption that
q is a divisor of the difference quotient bp−1 − cbp−2...+ cp−2 and therefore not
of b + c we have bω + c ≡ 0. So our choice of maximal ideal of J is consistent
with the rule that bω + c belongs to our maximal ideal on each non-rational
component (the first component is the only rational component).

In fact, each entry of c
b
z
y − 1 now has order at Q which is p times the order of

a at q, since −ap = bp + cp. To express it as a power series in bxy which has
nonzero order at our maximal ideal, being a multiple of a, we just need to use
the van-der-monde determinant which applies as long as we can verify that all
entries are distinct. We need to verify that no power of ω times c

b is equal to
1 or ω−1. This just needs that the rational number c

b is not precisely equal to
any p’th root of unity and is true. We also need that the ratio of order at Q is
at least as large as the number of entries which is p+ 2, so we need

vq(a
p)

vq(a)
≥ p+ 2.

The element q is a uniformizer in each component, and so we are trying to
express qpm(0, 0, 1, 1, 1, ..., 1) as a polynomial in qm(1, ω−1, cbω

0, cbω
1, ..., cbω

p−1).
I have taken the liberty to re-arrange the last p components and multiply by
units.
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It is now a linear algebra problem. Of course, as I might have mentioned before,
an easy way to approach this is to say, if we call our elements qmα and apmβ,
that if we can find a polynomial P (T ) of degree at most p so that P (α) = β then
we can find a homogeneous polynomial of degree p Q(X,Y ) in two variables such
that Q(1, T ) = P (T ), and then Q(qm, qmα) = qpmQ(1, α) = qpmP (α) = qpmβ.
But the question is, can we find a polynomial P (T ) of degree at most p such
that

P (0) = 0

P (ω−1) = 0

P (
b

c
ωi) = 1, i = 0, 1, ..., p− 1

Let’s write down a square matrix for which the last column must be in the span
of the earlier columns for the solution to exist. It is

1 1 1 1 ... 1 1 1 0
1 ω−1 ω−2 ω−3 ... ωp+2 ωp+1 ωp 0
1 b

cω
0 b2

c2ω
0 b3

c3ω
0 ... bp−2

cp−2ω
0 bp−1

cp−1ω
0 bp

cpω
0 1

1 b
cω

1 b2

c2ω
2 b3

c3ω
3 ... bp−2

cp−2ω
p−2 bp−1

cp−1ω
p−1 bp

cpω
p 1

...
1 b

cω
p−1 b2

c2ω
2(p−1) b3

c3ω
3(p−1) ... bp−2

cp−2ω
(p−2)(p−1 bp−1

cp−1ω
(p−1)(p−1) bp

cpω
p(p−1) 1


The next-to-last column is (1, 1, b

p

cp , ...,
bp

cp ) The first column represents b
a
x
y so its

valuation at Q or equivalently at q is −m, and the last represents 1
b2

c2
ω−1

( bc
z
y −1)

where we are on components where z
y = b

c . So each nonzero entry of the last
column represents

b2

c2 − 1
b2

c2ω − 1

and its valuation at q or equivalently at Q is −mp.

The last column is cp

bp times the difference between the next-to-last and the
first columns. Thus again one element can be expressed in terms of the other,
and we have local topological monogenicity demonstrated without an evident
contradiction.

A conjecture

We have not yet found any counterexample using a notion of tensor decomposi-
tion, but we will not delete the foregoing as it guide our intuition; let’s go back
to the case when we looked at the cyclic rotation.
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Conjecture. Let a, b be coprime positive integers, p an odd prime, and let
N = a2p + apbp + b2p. Let ω be an integer such that 1− ωp + ω2p ≡ 0 mod N.
Let j be a positive integer such that

j ≡ ωa mod N.

Then j ≥ ab.

Remark. The ω such that 1 − ωp + ω2p ≡ 0 mod N are just the numbers ω
such that ωp reduces to a primitive sixth root of unity modulo any nontrivial
divisor of N with the possible exception of 3, and such that if 3 is a divisor of
N then ωp ≡ −1 mod 3.

Remark. The conjecture if true would imply the Fermat theorem. Starting
with ap + bp + cp = 0 with p an odd prime, from the fact a, b > 0 we have c < 0

and we may take j = −c. Then j = (ap+ bp)
1
p ≤ ab and we have j ≡ ωa mod N

where we take ω = ja−1 and it remains to show that ωp satisfies the equation
1− T + T 2 ≡ 0 For this it suffices to show the same when pre-multiplied by a2p

where we are just evaluating a2p + apcp + c2p.

If we wish to get rid of any notion of the magnitude of j, instead of reducing
modulo expressions like a2 + ab+ b2 we instead conjecture this:

Conjecture. Let a be a nonzero integer. Let n be an odd number larger than
1. Then each integer b is uniquely determined by the set of m coprime to a such
that ( ba )

n mod m is idempotent.

Here reduction modulo m refers to the reduction map Z[1/a] → Z/(mZ).

Remark. This conjecture implies the Fermat theorem because negating b shows
that starting with the assumption that b determines the appropriate set of
numbers m, this set does in turn determine |anbn + b2n| while

anbn + b2n = ancn + c2n

would follow if bncn + anbn + b2n = bncn + ancn + c2n or in other words if
0 = (bn− cn)(an+ bn+ cn). As n is odd and a, b, c are pairwise coprime integers
this would be true if 0 = an + bn + cn.
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