
GPT Utility Manual

link to the application : https://spectrograph.uk/transformer.html

1

https://spectrograph.uk/transformer.html

To train a GPT encoder, the type of question one would ask is, how
should the query matrix in level 3, together with the error E in
matching training data, affect the key matrix in the attention step
of level 5?

The first authors of a back-propogation machine hadn’t included in
their paper that they just use the chain rule, and gradient descent.
However, a notion of gradient descent can depend on choosing an
error function to take the gradient of, and converting its differential
to a flow depends on a Riemannian matric on the weight space. By
default, one has tended to use a Euclidean metric, but both the
intrudction of softmax in attention layers and the notion of layer
normalization suggest that other possible metrics could simplify or
generalize the GPT architecture.

The model in ‘Attention is all you need’ introduces its own simplifi-
cation, of letting the data at every level be represented by a matrix.
At the beginning, each word of a sentence is encoded as a sequence
of real numbers, the sequences can be adjusted to include position
encoding, and still one begins with a matrix.

It does seem acceptable to use, on space of output matrices, the
negative Euler flow, or, what corresponds in coordiantes xij with
the sum −

∑
xijdxij. This flow, acting on all possible error matrices,

gives E ∗ dE if we denote by dE the four-tensor which is just the
matrix whose entries are the differential forms dxij. The operation
∗ here is the multiplication of corresponding components, and we
have

−E ∗ dE = −trace(EtdE)

with respect to more ordinary matrix multiplication.

2

In an encoder chain with one attention head per layer and no layer
normalization, for example, the operation of the GPT in the i’th
layer is

Fi(w,X) = m(a(n
−1/2
i XiQiK

t
iX

t
i)XVi + Cbi)Wi + Cfi (1)

where w = (Ki, Qi, Vi,Wi, bi, fi) is the tuple made of the query, key,
value matrices and C is a column vector with entries of 1 so that the
last parts denote two affine transformation; and m is the operation
which sets any negative matrix entry to zero while a is softmax.
(Note we absorb the linear part of an affine transformation acting
on the right into Vi as we may).

Then if we train against an answer f(X), we have E = f(X) −
F (w,X). For fixed X, or vieweing X as constant, this is a map
W → V from the weight space to the answer space.

Although there is no natural pullback of vector-fields, the map is
nothing like a local isomorphism as W has higher-dimension, even
without choosing any error function or metric, we can pull back the
Euler form along the error map, we are pulling back trace(EtdF (w,X))
where F is the composite of the Fi, if we are only training a sequence
of encoders.

If we simply apply d formally to a product of a copy of (1) for each
layer, using Leibniz rule, we can finish the calculation. Just like for
traces of ordinary matrices, with these four-tensors we expand out
using the distributive rule, and then cyclically rotate each term to
bring a letter dW to the end, where W is one of the matrices which
are the component of the weight space.

That is, we can use the rule that even for matrices of forms applied
to matrices of numbers,

trace(A d(B) C) = CAtrace(dB).

3

When we need to calculate dm(X) for X any matrix, we write this

dm(X) = mm(X, dX)

where mm sets each entry of dX to zero when the corresponding
entriy of X is negative. Note now that mm is linear with respect
to addition in the second argument, so when X is a polynomial
expression, we may continue to apply Leibniz rule in the second
argument of mm. When we need to calculate d(a(X)) with a the
softmax function, we find this is aa(X)dX where aa(X) is a matrix
made using the entries of X and the exponential function.

These operations actually are not enough to rewrite the pullback of
EtdE to the weight space without one additional move. It is that

trace(A mm(B,C)) = trace(mm(Bt), A)C).

That is, when we have differentials trapped in the second argument
of mm we can use this trick to flip the mm function onto the com-
plementary part of the word.

In the utility, matrices are initially represented as symbolic entities
(we just use nested arrays in the DOM with an extra key denoting
the operation), later, in a part being written now, we will use ordi-
nary matrix multiplication routines to make the calculation do-able,
so we may chat with the utility.

To create a matrix object A in the DOM we write A = [“A”]; a.op =
“” and now A has three manifestations, we can see the matrix in
the display by writing

show(A)
show(string(A))
show(html(A))

If we want to describe the product or sum of two such objects we
write this as otimes(A,B) or oplus(A,B). Unlike other things here,
the preceding o does not relate to tensor products, it stands for
‘object’. For A,B variables as above, for instance ⊗(A,B) is the
array [“A′′, “B′′] and we set ⊗(A,B).op = “.′′.

4

Using these conventions, the architecture of a standard encoder is
abbreviated by the function called ‘encoder,’ such that for example
encoder(2) shows a composite of two layers. Here is a screenshot of
the utility doing that.

show(encoder(2)
show(string(encoder(2))
show(html(encoder(2))

5

The operation d applies to any of these using the transformation
rules above. When they are all combined, they yield the explicit
formula for −EtdE, the whole form in html can be displayed by
using the shortcut forms(2).

I’m cheating a bit by hitting up-arrow to bring command back in
the window, actually I have it scroll out of view when you press
‘enter’ so you can give the next command.

Anyway, this is too large to fit on the screen, so to see just one
summand we can write, for instance forms(2,4).

The tensor at the end dKt
1, is a matrix of differential forms made

from the coordinates of the key matrix at layer 1, and it has a
single matrix as a coefficient, we see here the expression for that
matrix, it involves the two-place functionmm – we’ve made a change
for simplicity with respect to the transformation rule, so I can tell
you the correct definition of mm(A,B) is to set the entries of B

6

to zero which are in the position of negative entries of At, – and
the dimensions will all line up so this makes sense. The function
a() is softmax, and aa() is a single variable function also built
using exponentials of its one matrix argument, such that da(X) =
aa(X)dX.

It might help to explain the algorithm if we write down the definition
of the function forms(i). It is

show(html(cycle(shiftmm(flatten(expandmm(expandAll(form(encoder(i)))))))))

We already explained how encoder(i) describes the action of i layers
of encoding, now form is just defined such that

form(E) = −EtE.

7

The function expandAll() just does multiplying out in the group al-
gebra of the free monoid. We can test this by making some variables
which we just do in the website DOM as

A=[”A”];A.op=””;B=[”B”];B.op=””; Y=otimes(oplus(A,B),A), Z=otimes(Y,Y)
and we can write

showHTML(Z)
showHTML(expandAll(Z))

Let’s look at the action of expandmm, we take the object

flatten(expandmm(expandAll(form(encoder(2)))))

Here expandmm is just the continued expansion using the fact that
the second argument of mm commutes with sums.

8

Let’s only work on the part visible without scrolling, for now, the
grey box below the command window is for errors and logging, if we
write log(z.length) we see z has 16 terms, so let’s just look at one
of the last ones, show(html(z[13]))

We see that dKt
0 occurs within the second argument of mm, so we

cannot yet access the coefficient of dKt
0, but this is where we apply

shiftmm, we could apply it to the whole form, but let’s just apply
it to this part, so we write show(html(shiftmm(z[13]))) giving

9

The differential dKt
0 has been removed from the argument of the

function, and now we may apply the cycle operator

10

And we see that the order four tensor is written as a product of a
matrix which we know, times a matrix of one-forms, which are the
differentials of in this case the attention key of the zero’th encoding
stage. The only weight from the next stage that affects this coeffi-
cient matrix is f1 which is the row vector which adds a translation
on one side of the max activation step in the next stage. And the
transpose of the error matrix occurs in the middle of this coefficient
matrix word, but, the point is, every factor in this word is known
now by direct calulation.

I have written the entries of aa(X) for any matrix X in the prequel
to these notes, as I mention, each entry is given by a simple formula
in terms of the entries of X and their exponentials.

By recognizing that pulling back differential forms is canonical, and
that particular symbolic manipulations allow us to express the pull-
back in a normal form, we have a chance to understand the future
role of a Riemannian metric on the weight space, and other concep-

11

tual simplificaitons to the GPT architecture.

If tensorflow is efficient about using sparse operations, this answer
should agree with the answer given by tensorflow’s gradientTape
operation starting with the error function which is half the sum of
squares, and the Euclidean metric on weight space. However, just
having the final Jacobian matrix at the end may not give us as good
insight as having a symbolic expression of the form which can be
dualized againsts a choice of Riemannian metric to give a flow, or
understood symbolically or theoretically.

While I’m thinking about this, I do want to say, I have not put in
the code the step of transposing the first argument of mm when we
do the flip, and yet in these calculations the flip is always done, and
so we should merely re-interpret the dfefinition of mm such that
mm(A,B) sets the entries of B to zero in the positions of where
entries of the transpose of A are negative. Since B here is a four-
tensor, I need to explain the conventions, but if you think of B
sometimes as a ‘matrix of one-forms’ then those very matrix entries
indices which the phrase implicitly refers to are the ones which need
to correspond, now, under transposition.

There are several other clarifications I wanted to make, however I
can’t now think what they are.

In any case, when I have finished connecting these matrices to the
literal matrix multiplication routines, we can examine individual
matrix coefficients during training, and have some detailed canonical
insight into the mechanics of training a GPT.

12

