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Abstract: A possible criterion for eventual success of a treatment of a pathogen
with a compound life-cycle involves four constants

rxyryx ≤ rxxryy

We will firstly consider mathematical consequences of the inequality for an ar-

bitrary pair of integer sequences. These show the necessity of the condition is

essentially a tautology. There are diseases when the condition fails to be suffi-

cient but we’ll show it can be proved so in cases where a dynamical model gives

the correct answer. We relate the condition to existing literature, we give corol-

laries related to one-way antagonism and induction therapy, and we consider

in depth to an example to a hepatitis illnesses where some of the four con-

stants have been calculated already, and we will consider applying these ideas

to chronic malaria. The article contains tutorial sections and could be read by

medical researchers without mathematical knowledge.

Introduction

While typing this we received a note from nursery that children must
be checked for lice egg cases; if found, parents are advised persistent
use of a fine-toothed comb. The anecdote is an excuse to motivate
the formula which will be described in the article: Let x and y be
the numbers of egg cases and lice, respectively, rxy the average rate
at the various egg cases produce lice, ryy the average rate at the
various lice disappear, and so-on, all measured when x and y take
small values x1 and y1. A simple counting argument seems to suggest
the inequality

rxyryx ≤ rxxryy (I)

should determine whether the regime is sufficiently intense to even-
tually be successful.

In this article we will consider when it is the case that the truth of
the inequality (I) is necessary or sufficient to eventually eradicate
a pathogen with compound life cycle, including situations where
the physical interpretation of the four constants may be unknown.
Firstly, viewed as an abstract mathematical condition on a pair of
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integer sequences x1, x2, ... and y1, y2, ... we will discuss the conse-
quences of truth or failure of (I) on the values of the sequences,
showing the necessity of the condition is essentially a tautology. We
will discuss illnesses where the criterion is not expected to work, but
also verify that (I) is both necessary and sufficient in cases where
a dynamical model also gives the correct answer. We call it the
intensity criterion because in such cases it can determine what in-
tensity of treatment is necessary to eventually eradicate a pathogen
with compound life cycle. We give corollaries related to one-way
antagonism and induction therapy, relate the condition to existing
literature, and discuss in depth the example of a hepatitis illness
where some of the four constants have already been calculated. The
article includes tutorial sections can be read by researchers without
specialized mathematical knowledge.

The condition (I) as a numerical condition.

Suppose we are given two nonnegative integer sequences x1, x2, ..., xn
and y1, y2, .., yn. These may be measurements of pathogen numbers,
or any other sort of measurement. For some reason it may be difficult
to directly determine whether xn or yn is zero. For example we may
have had the ability to detect large values of the sequences and
the values of all the terms may be below our favourite detection
assay. We want a convenient way of establishing that xn and yn are
nonzero.

1. Theorem. Suppose rxx, ryy, rxy, ryx are nonnegative real num-
bers chosen such that the errors in both approximations

xi+1
∼= xi − rxxxi + ryxyi

yi+1
∼= yi + rxyxi − ryyyi

include some positive and some negative values. Suppose the in-
equality (I) fails, so that the difference d = rxyryx−rxxryy is positive.
Suppose also the starting values x1 and y1 are adequately large, by
which we mean x1 ≥ a/d and y1 ≥ b/d. Then (regardless, of course,
of how large n may be), nevertheless

xn, yn 6= 0,
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where the various numbers are defined as follows:
a = ryyEx + ryxEy,
b = rxyEx + rxxEy,

Ex = max
i

(−rxxxi + ryxyi − xi+1 + xi)

Ey = max
i

(rxyxi − ryyyi − yi+1 + yi)

Proof. If bxi ≤ ayi then

bxi+1 − bxi ≥ yi(−arxx + bryx)− bEx

= (yid− b)Ex.

Failure of (I) says d ≥ 0 so the right side is positive as long as
yi ≥ b/d. If on the other hand ayi ≤ bxi then ayi+1 ≥ ayi as long as
xi ≥ a/d. In either case the minimum of bxi and ayi must increase
and can never become smaller than ab/d. The hypothesis that some
errors are positive implies that Ex, Ey > 0 and therefore that a, b > 0
so ab/d > 0.

Determining when a dynamical model
gives the right answer

As recently as 1995, it was an unanswered question, due to Nigel
Burroughs, what sort of equations explain viral loads becoming un-
detectable and relapsing afterwards. Linear differential equations
never do, because they are invariant under scaling. Nor do nonlin-
ear Lotka-Volterra type equations. The theory of nonlinear ordi-
nary differential equations, also called dynamical systems, contains
a wealth of such examples abstractly. Research there focusses on
finding subtle and mathematically interesting behaviour.

Within the medical literature of the early 1990’s the research in
virology included measurements of viral loads like

130, 000± 560, 000

in which the standard deviation is larger than the mean, and statis-
tical techniques managed to correlate treatment success with rates
of reduction early in treatment, for example for HBV and HCV.
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However, the correlation was not good. Subsequently, D. Ho et al
[6], Xi-Ping Wei et al [7], S. Perelson et al [9] used response to
medication to determine coefficients of particular HIV models. The
HIV-1 model of [9] involves viral load V , infected CD4 T-cell count
I, and total CD4 count T + I. This HIV-1 model was not intended
to explain relapse after treatment. The mechanism of relapse is be-
lieved to relate either to evolution of the virus or to its action on the
immune system, which might not be described by any differential
equation model.

In [1] the same model is applied to HCV, by replacing CD4 T cells
with hepatocytes. There are some differences between the two dis-
eases. The third variable T + I being the total number of hepato-
cytes, should be just a constant for HCV. For small values of V and
I the model is linear and would not be able to exaplain relapse. Also
whereas in the case of HIV, infected T cells cannot replicate or come
into contact with each other, one has to consider whether hepato-
cytes might. The slides in [5] show infected hepatocytes distributed
randomly in liver tissue rather than clustered, yet the possibility
of hepatocyte-to-hepatocyte infection through another route besides
serum should be considered. Also, it might actually be the case that
there does not exist any ordinary differential equations model, with
variables reppresenting serum and hepatic viraemia, which correctly
differentiates between sustained response and relapse in hepatitis C.
This illness will be considered again later on.

Tutorial about logarithms

Before we proceed further, let us review a familiar use of logarithms.
The number x will denote a quantity of pathogen, which could be
a count of the number of virions, bacteria, Malaria parasites or
malignant cells in a single patient, or the number infected individuals
in a population. Typically the natural log ln(x) tends to increase
or decrease linearly under various treatment strategies. In medical
practise it is more usual to measure x in international units and to
use the common log rather than the natural log. Changing the units
of x does not affect the rate of change of ln(x) and the common and
natural logs are related by the rule

ln(x) ∼= 2.3 log(x)
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Since ln(x) seems to behave linearly, one might try making a graph
of ln(x) agaist time. There exists log/linear graph paper for this
purpose, in which the vertical axis is already marked in logarithmic
units. An optimistic hope would be that if the graph of ln(x) slopes
downwards when treatment is commenced, it should eventually pass
zero. If this hope were realized, then eventually ln(x) < 0 which
implies the whole number x satisifies x < 1. Then x = 0 and the
pathogen has been eradicated. Moreover from the slope-intercept
formula the amount of time this will take would equal the ratio
ln(x)
r

where r is the rate of decrease. Such graphs for hepatitis C
treatment can be found as early as 1995, and for malaria as early as
2000 [11].

Although there is no mathematical error here, there are two very
different circumstances in which the hope would not be realized.
The first reason is this: the slope of the graph of ln(x) is the ratio
between the time rate of change of x and the value of x. For large
values of x the time rate of change tends to be hampered by limiting
considerations, but less so as x decreases, leading to worse than
predicted success. This particular problem can be solved by letting
r be the limiting value of the rate of decrease of x as a proportion
of x, as x approaches zero.1

ln(x)

time

The more important reason is that often, and invariably in the case

1rigorously one has to speak of the upper bound of the limiting set instead of the limiting
value
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of HIV, x decreases to a nonzero, though possibly very small, stable
equilibrium value. Later and later estimates of the limiting value
r, appearing to predict treatment success, are really measuring the
limit as x approaches a false, nonzero, equilibrium point, and re-
lapse occurs after treatment. The number r, which is limit the as x
approaches zero, is not even relevant because x never does approach
zero.

ln(x)

End of treatment time

There are other possibilities also which occur such as a transient
decrease and rebound

Pathogens of a compound life-cycle

Sometimes the existence of a false equilibrium point can be explained
by the fact that chronic pathogens, in order to be chronic, need to
have a a compound life-cycle. Suppose there is a dynamical model of
the pathogen which matches clinical data, in the precise sense that
it gives the same answer with regard to the abstract question of
eventual treatment success, without regard to treatment duration.
Suppose that the model is a two variable model in which the rates
of change of x and y are given by well-defined functions of x and y
with negative Hessians when considered separately. The hypothesis
about the separate Hessians is equialent to saying an attempt to
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apply linear extrapolation to one the functions would always lead to
an underestimate, possibly due to limiting factors which increasingly
take effect for larger x and y. There are now four limiting rates,
measured in the matching model

rxx, rxy, ryx, ryy.

For example, rxx is the time rate of decrease of x as a proportion of
x when y is zero, taken in the limit as x tends to zero while rxy is
the time rate of increase of y as a proportion of x when y is zero,
taken in the limit as x tends to zero. Despite the subscript notation,
these are not second partial derivatives of any function r and rxy is
rarely the same as ryx.

The only case which needs to be analyzed is where all four numbers
are nonnegative, so the treatment is not already obviously inade-
quate for the variables x and y individually, yet the variables are
mutually antagonsitic. We shall assume this is the situation.

2. Theorem. Under these conditions the intensity criterion (I)
will match the clinical data on the question whether a treatment
strategy is eventually effective (with no consideration of the issue of
treatment duration).

The proof, which will be given in a later section, also shows that
formula (I) controls the position of a single undesireable equilibrium
point in the unknown model. When (I) fails but x and y converge,
we’ll show they must converge to the false equilibrium values and
relapse again after treatment is stopped.

Corollaries.

Now we can return to the question of deciding when a suitable dy-
namical model exists which can match clinical data on eventual
treatment success. Both corollaries are negative; i.e., give condi-
tions when no such model could exist. Mathematically speaking,
condition (I) is the same as positivity of a two-by-two determinant,
which detects when two intersection points of two curves coincide.
A different but already familiar condition can be obtained by re-
placing both rxy and ryx in (I) by the average 1

2
(rxy + ryx). Taking

square roots of both sides we obtain just the comparison between
an arithmetic mean and a geometric mean, equivalent to positivity
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of the determinant of the symmetrized matrix. It is fortunate that
the correct intensity criterion did not require symmetrizing the ma-
trix, for condition (I) as it stands has our first interesting corollary
about one-way antagonism. If either one of rxy or ryx is zero then
the product rxyryx on the left side of (I) is zero, and the inequality
is true. Thus

3. Corollary. Under the hypotheses under which the intensity
criterion can be proven, if the two forms of the pathogen are antag-
onistic but not mutually antagonistic (i.e.; one helps the other but
not vice-versa), then any treatment intensity which is effective for
both separate forms of the pathogen will eventually be effective for
the combination of the two forms.

There is another corollary which could be useful in ruling out the
existence of a suitable dynamical model.

4. Corollary. If an eventually unsuccessful treatment strategy can
converted to an eventually successful one by preceding it by a more
intense phase of treatment, one of the hypotheses under which the
intensity criterion has been proven must fail.

The corollary is proved by observing that the induction phase just
changes the initial values of x and y, yet the inequality (I) which
measures eventual success of the second phase does not refer in any
way to the initial values; it applies regardless of what they may be.

As examples of ruling out the existence of a suitable dynamical
model, firstly, the hypothesis implies the four limiting exponential
rates do not depend on the time at which x and y can be made to
approach zero, relative to start of treatment. In situatins such as mi-
crobial resistance the statement of the criterion does not even make
sense unless one chooses a putative time of cure at which to measure
the four limiting rates. Secondly, there actually are pathogens for
which the inequality (I) fails because rxx is not positive, but x can
be set to zero during an induction phase and rxy to zero during a
maintenance phase. Here the unsatisfied hypothesis is that rxx must
be positive.

The case of HCV

An important characteristic of HCV virus is the hypervariablility
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of the portion of the genome which controls the lipoprotein enve-
lope, making immune recognition difficult. Accepting that immune
recognition is difficult, it is known that interferon treatment alters
the situation in an unknown way, and can lead to cure. Yet treat-
ment is not ideally effective and considerations of treatment inten-
sity are necessary. It should be a central concern that, even under
treatment, the virus can remain chronic. A number of possible repli-
cation sites for the HCV virus have been proposed, including blood
mononuclear cells, gut, central nervous system, and liver. Some
attempts have been made to measure both positive and negative
stranded RNA at these sites. The greatest evidence supports the
life cycle described mathematically by Neumann et al [1] in which
hepatocytes release virions into the serum in turn infecting hepato-
cytes. This is an adaptation of the HIV model [9] with CD4 T cells
replaced by hepatocytes.

The specific evidence suggesting replication occurs mainly in hep-
atocytes includes papers starting with an observeed a correlation
between interhepatic viral load and serum viral load across patients
[3] and papers noting a good correlation also between serum viral
load and number of infected hepatocytes [8] and finishing with recent
work by [10] who observe in newly infected chimps an early bloom
of circulating alanine aminotransferace correlates with spontaneous
clearance of the virus.

If we let x be a measure of hepatic viraemia and y the number of
circulating virions then some of the four limiting exponential rates
are calculated in [1]. The correspondence between notation is given
by restating the intensity criterion in the new notation

pβ ≤ δc (S)

where δ, β, c, p are taken as in that paper, but with appropriate
scaling.

Neumann et al suggest administering interferon may act to decrease
p or β. There is also presumably the possibility of interferon in-
creasing c by acting on free virions

Herrmann et al [2] calculate some of the coefficients under vari-
ous treatment strategies, indirectly arguing for example that under
pegylated interferon and ribavirin δ is .05 at start of treatment, in-
creasing to .51; that c is 4.7 and p is reduced by .67. They mention
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that the effect of ribavirin might be to increase δ. If so, the synergy
between interferon and ribavirin is at least consistent with (S), as
both medications act to decrease the left side or increase the right
side. They indicate that conclusions based on a particular model
would need to be backed up by future virological or immunological
research.

As we showed in Theorem 1, the necessity of the condition, up to
an error margin, is related to a tautology about integer sequences
which would have consequences whenever the four constants have
any consistent definition whatsoever for small values of x and y.
This should not be surprising. There are well-known but simpler
numerical tautologies of a similar nature, such as that an end-of-
treatment non-responder will not usually be a sustained responder.
Regarding sufficiency one might ask about the existence of a dynam-
ical model distinghishing relapse from sustained response. Cases of
virological breakthrough would have to be excluded. Without going
into any detail, some of the evidence on the side of the existence of
a dynamical model are that that immediate retreatment is no less
successful than retreatment after a delay, ribavirin acts to prevent
relapse without genetic evidence of causing a mutation cascade, the
existence of a false equilibrium point is morejconsistent with relapse
after undetectability than a resistant quasispecies hypothesis, and
so-on.

Other work on the possible effects of ribavirin such as genetic anal-
ysis not supporting a mutation cascade, has led to the hypothesis
that the effect of ribavirin may be related to immune modulation
rather than directly antiviral. This conclusion is tentative and there
is debate in the literature about the use of any particular model
to measure physical quantities indirectly. (see [4] and related cor-
respondence). One should expect that the HIV model will have
difficulties when applied to HCV. As we have mentioned, third vari-
able T + I in the model, which represents CD4 T-cell count in the
case of HIV-1, is just the constant number of hepatocytes in HCV.
For small values of x and y that particular model becomes linear
and would not be able to match clinical data on relapse. And the
adapted HIV model does not allow infected hepatocytes to replicate
or infect others except via serum. The slides in [5] do show infected
hepatocytes distributed in liver tissue rather than clustered and in
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this sense it is possible that the failure to allow direct cross infection
of hepatocytes may not be as serious as the structural innacuracy
of the model as a whole.

Without answering the question whether the particular model used
in [1] and [2] is accurate one knows the aim of the analysis in those
papers remains useful. The intensity criterion does not require any
particular physical interpretation to be given to the four limiting
rates. The idea of [2], that ribavirin might act to increase δ, could
be tested regardless of whether one thinks the action is related to
a decrease of intrahepatic infection – the possibility which was not
allowed by the adapted HIV model – or by some other explanation
like immune modulation.

One can obtain the four constants directly such as by regression
on low values of x and y to minimize the linear errors in Theorem
1 in a least squares sense. Obtaining a sufficient dose to satisfy
(S) is a purely pharmacological question, answerable by direct mea-
surement. To do this measurement one needs to measure x and y
themselves. It has been possible to directly measure virions within
infected hepatocytes at any point of treatment since 1995 [3], and
virions in serum since the 1980’s. Ignoring ethical questions, one
could infect either liver tissue or serum of a healthy volunteer and
directly measure the proportional rates of change x and y in each of
the two cases.

Ethics presumably prefers measurements while trying to eradicate
the pathogen. Also liver biopsies are not ordinarily done just for
the sake of virological analysis. Thus the necessity, currently, of
the approximate attempts in [1] and [2] and elsewhere to deduce
limiting exponential rates using “first slope”, “second slope” and
”third slope” to approximate to calculating c, δ, and then δ later
in treatment, respectivley, and which do need to assume a model,
currently the HIV model. Perhaps p could be measured directly
using data such as [8] on reapse in a newly transplanted liver, if it
were possible to approximate the initial change of hepatic infection.
Subject to distortions due to residual effects of medication, perhaps
δ could be measured via rapidity of of observed relapse when serum
viral load is undetectable but not interhepatic viral load.

There is recent interest in even small fluctuations of ALT during
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treatment. This is a measure of hepatic inflammation rather than
hepatic viraemia and unfortunately there appears to be little cor-
relation between these [5]. There are linear formulas such as ”Ac-
titest” combining a number of liver function tests which have been
optimized to measure inflammation. It would be useful to have
an analogous regression formula measuring hepatic infection which
works during treatment, although no liver function test which has
been studied separately correlates in untreated individuals [5] in a
two-say correlation.

As the project of measuring the four coefficients, as functions of
medication doses, nears completion it will be interesting to compare
the inequality (S) actual retrospective data on sustained response
versus relapse. The article [2] has already noted a relation between
δ and sustained response – but note the measurement there of δ is
via third slope, which could also be related to inadequate treatment
duration (see the first graph in the section about logarithms above).
If the data do not match (I) one will have ruled out in one stroke
a range of mathematical models, and this would be a significant
contribution to the question of how mathematics may or may not
apply. If it becomes difficult to find a statistically significant differ-
ence one has a lesser consolation, that the possibility would remain
open of applying (S) to diffferentiate between relapse and sustained
response.
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The case of Malaria.

Malaria shares interesting similarities with hepatitis C, although
the pathogen is of a totally different type. Both are thought evade
immune detection due to a hypervariable genotype. The two rarer
types (vivax and ovale) can have a chronic manifestation in which
liver parenchymal cells and red blood cells are infected separately.

Treatment is based on an quinolones, quninie, chloroquine, an ex-
tract of the quing hao herb (artemisinin, an asymmetric small molecule
with chemical formula C15H23O5 thought to kill circulating Malaria
parasites in serum.

The life cycle of Malaria, appears to be that after a person is bitten
by a mosquito sporozoites inhabit parenchyma of the liver, each
release on the order of 10,000 ring form merozoites into circulation.

Infected red blood cells sequester in the liver spleen or brain, and
also circulate. In the two types which can be chronic, also liver cells
can be infected.

Even in the two types which cannot be chronic, the malariae and
the more dangerous and prevalent falciparum, there is a cycle of
illness which since ancient times has been observed. In the case of
falciparum there is a fever every two days.

The infection is carried by merozoites which live in circulating red
blood cells, and also in red blood cells which become are sequestered
in the blood cells of the liver, spleen, or brain.

If we take x and y to be a measure of the sequestered and circulating
merozoites, the four numbers involved in the intensity criterion are
likely to correspond well with physically measureable parameters.

The article [11] considers that the rising, oscillating graph of falci-
parum count in relapsed patients can be explained by this compound
life cycle of falciparum. The idea is supposed to be that a bloom of
infection causes a subsequent bloom in each subsequent generation.
In [11] the multiplication factor M represents the total number of
infected erythrocytes originating from a single one after a single iter-
ation of the process of generating a sporozyte, so essentially the con-
stant M in that model is the product rxyryx. The distribution f(t)
in that paper is described as “similar in shape to the distribution of
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merozoites released from the liver over time following hepatic mero-
gony.” Because the distribution used is a composite of translates of
a single distribution (one translate for each generation considered)
the observed syncrhonous oscillation is built into this model.

The intensity criterion is simpler, assuming as it were that the distri-
bution were flat while the sequestered blood cell is alive or present.
The width of the distribution then corresonds to the proportional
rate at which sequestered parasites perish. The number M equal to
the product rxyryx.

The proof for dynamical models.

Now I will turn to the proof that the formula applies in a reasonable
range of mathematical models. The assumption is that the rates of
change are given

dx/dt = f(x, y)

dy/dt = g(x, y)

where f and g are smooth functions which have negative Hessians
when considered separately, and which vanish when x = y = 0.
From this it follows that the region A where f ≥ 0 and the region B
where g ≥ 0 are both strictly convex. In other words, a line segment
joining two points of the boundary of A is contained in the interior
of A and likewise for B.

The gradients of f and g at the origin are (−rxx, ryx) and (rxy,−ryy).
The difference between the two sides of (I)

rxxryy − rxyryx

is just the Jacobian determinant, the cross product of the two gra-
dients. The region where both f and g are positive, being an in-
tersection of convex sets, is again convex, and the geometry of the
situation is such that when the determinant is positive, the entire
region is contained in the third quadrant.
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This stability point
is not in first
quadrant

x

y

grad(f)

grad(g)

A

B

There may be a second solution of the equation f = g = 0 besides
the origin, but this must lie on the boundary of the convex region,
again in the third quadrant, where x and y are negative. Therefore
there is a unique equilibrium point in the first quadrant. This is
a universal attractor for the first quadrant. To see this, choose
any point (x, y) in the first quadrant. For a, b defined analogously
to before, max(bx, ay) decreases over time until x = y = 0. This
finishes the proof when the determinant is positive. Turning to the
case when the determinant is zero we see that either one of A or
B is a single point, or else A and B are tangent at the origin and
meet nowhere else. In these cases A ∩B is a single point and again
meets the first quadrant at only the origin, which is again a universal
attractor for the same reason as before. Turning now to the case
of negative determinant, we see now that the region A ∩ B does
meet the first quadrant besides at the origin. For any nonzero point
(x, y) in A ∩B in the first quadrant it is now true that min(bx, ay)
increases over time whenever x and y are small enough to ensure
(x, y) ∈ A ∪ B. Certainly the treatment strategy is never effective
in this case, and the proof is done.

As promised, let’s compare the model when the inequality (I) fails
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to real life. If A∪B covers the first quadrant, we have x and y tend-
ing to infinity. In this case the treatment is ineffective as claimed,
but in real life nothing tends to infinity, so practically speaking this
case does not occur. The meaningfull case, still assuming the deter-
minant is negative, is when A ∪ B is not all of the first quadrant.
Then the boudnary of A and B meet at two points, and there is
a second solution of f = g = 0 in the first quadrant besides the
origin. This is the promised undesireable equilibrium point which
is supposed to explain relapse when (I) fails. Any particular orbit
cannot approach zero due to the condition min(bx, ay) increases for
small x and y. It cannot approach infinity in real life, as we said.
There being just two equilibrium points the orbit must approach
the undesireable equilibrium point or become a limit cycle.

I should add, limit cycles being rare in real life (though the behaviour
of Malaria is suggestive), one would most often see a situation where
x and y would reach the false equilibrium values, possibly being un-
detectably low. But if treatment were ever discontinued one would
see relapse in this case.
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