
Euler equations

Definitions in Riemannian geometry.

We begin with a possibly non-compact, orientable Riemannian man-
ifold (without boundary) M of dimension n.

Let’s begin with a review of basic Riemannian geometry. Although
the smooth functions form a ring known as C∞(M,R) we’ll use
sheaf notation in order that theorems will generalize to the analytic
setting. Thus we’ll consider the sheaf OM of smooth functions in
place of only its global section ring C∞(M,R).

We will use the
〈v, ω〉

when we wish to pair together a vector field v with a one-form ω
using the duality between them (as locally free sheaves over OM).
The same function is equal to the contraction of ω along v and so

〈v, ω〉 = iv(ω).

And if ω is closed, so ω = df it is also just equal to the (Lie)
derivative v(f). We’ll use exactly the same angle brakcet notation

〈v, w〉

when we pair two vector-fields using the Riemannian metric. Thus
for instance in local coordinates u1, ..., un we have

〈 ∂
∂ui

,
∂

∂uj
〉 = gij

the i, j matrix entry of the Riemannian metric tensor in the corre-
sponding bases. We will use subscripts throughout, and the variance
of operators will not be indicated by use of superscripts in place of
subscripts.

The same angle bracket notation also will be used to pair two one-
forms under pairing coming from transfer of structure the isomor-
phism between vector fields and one-forms coming from the metric,
we not only will use the same notation, but the pairings correspond.
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The gradient ∇f of a function (=local section of OM) is to be the
vector field that corresponds to the one-form df under this isomor-
phism. Thus for all functions f, g it is a matter of definition that

〈∇f, ∇g〉 = 〈df, dg〉.

We’ll write grad(f) as a synonym of ∇f in formulas where there are
already too many triangles and notation becomes confusing.

The natural pairing between one-forms and vector fields is related
to the volume form η by the rule

ω ∧ iδ(η) = 〈δ, ω〉η.

For instance if η = fdu1 ∧ ... ∧ dun and ω = du1 then

ω ∧ iδ(η) = ω ∧
n∑
j=1

(−1)jfδ(uj)du1 ∧ ... ∧ duj−1 ∧ duj+1 ∧ ... ∧ dun

= fδ(u1)du1 ∧ ... ∧ dun
= δ(u1)η

.

On the other hand, the differential of iδ(η) is diδ(η), which is the
same as the Lie derivative δ(η). The eigenvalue of the action of δ on
η (which is a section of OM) is the ‘volume multiplying factor’ of δ,
known as the divergence div(δ), and so we have

diδ(η) = div(δ)η.

It follows that

1. Proposition. For any vector field δ, div(δ)η is an exact n form.

Remark. Note that this implies that when M is compact the diver-
gence operator is not surjective; I think the cokernel is represented
by the constant function 1 in that case.
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If we replace δ by a multiple fδ with f a section of OM we have

div(fδ)η = difδ(η) = d(fiδ(η))

just because iδ is OM linear in the subscript variable, and this then
equals

df ∧ iδ(η) + f div(δ)η = 〈δ, df〉η + f div(δ)η

Thus equivalently

div(fδ) = 〈δ, df〉+ f div(δ)

We can solve this giving a useful way of rewriting the ordinary eval-
uation of δ against df – which is the value of the derivation δ(f),
as

δ(f) = 〈δ, df〉
= div(fδ)− f div(δ)

Thus,

2. Proposition. If δ is a global divergence-free vector field, then
for any global compactly-supported smooth function f

0 =

∫
M

δ(f)η.

Proof. The formula above shows that the integrand is a divergence
times η, and we can apply Proposition 1. QED
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Biot-Savart type rules.

The Laplace operator (more rigorously we should call it the Laplace-
Beltrami operator) assigns to a section f of OM the section

∆(f) = div ∇f.

This is the volume eigenvalue of the gradient flow of f. A function
f is deemed harmonic if 0 = ∆(f).

Using the earlier rule we may rewrite 〈df, dg〉 for f, g local sections
of OM in two different ways, as we may write

df ∧ i∇g(η) = 〈f, g〉 = dg ∧ i∇f (η).

The difference being zero means that we may simplify the deRham
differential

d(fi∇g(η)− gi∇f (η)) = (dfi∇g(η)− dgi∇f (η)) + (f∆(g)η − g∆(f)η)

= 0 + (f∆(g)− g∆(f))η
.

Thus in particular,

3. Proposition. If g is harmonic and U is a codimension zero
submanifold with boundary in M then g is an integrating factor for
∆(f) in the sense that∫

U

g∆(f)η =

∫
∂U

fi∇g(η)−
∫
∂U

gi∇f (η).

Proposition 3 leads directly to a Biot-Savart law in Euclidean space
if we take U to be the complement of a sphere, M to be the one-
point compactification of Euclidean space, and g = r2−n for r the
distance from center point x of the sphere. Then f i∇g(η) = f (2−
n)r1−ni∇r(η) which integrates to a number which approaches (2 −
n)f(x) times the area of a unit sphere as the sphere shrinks to zero,
the other boundary integral is negligible. Thus one may solve for
f(x) knowing ∆(f)(x) for all x.
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Covariant differentiation of one-forms.

The covariant derivative is perhaps easiest understood in the first
instance in its action on symmetric powers of the sheaf ΩM of one-
forms. For the independent direct sum of all the symmetric powers
of ΩM is contained within the sheaf of smooth functions OTM where
TM is the tangent bundle of M, just viewed as a manifold.

The metric tensor provides an extension of every vector field on M to
a vector field on TM whose restriction to the zero section M is this
given vector field. If we write δ for the derivation of OM associated
to a vector field on M, we then can write ∇δ for the corresponding
derivation of OTM .

If the vector field is only defined on an open subset U (as we allow
when speaking of the sheaf of vector fields), then it describes a
derivation of OU and extends to a derivation on OV where V ⊂ TM
is the inverse image of U under the tangent bundle projection.

Thus ∇δ acts on functions on the tangent bundle in the ordinary
way, and if ω is a one-form on M we can interpret it as being a
real-valued smooth function TM → R which happens to restrict to
a linear transformation on the linear fiber spaces.

Note that ordinary functions, sections of OM , can be viewed as
sections of OTM which just happen to be constant on the tangent
bundle fibers. Then the action of ∇δ on such functions is just the
same as the action of δ.

This observation can be understood as explaining the ‘rule of a con-
nection,’ namely that if f is a function and ω is a one-form

∇δ(fω) = ∇δ(f)ω + f∇δ(ω)

simply because f and ω are both functions with domain TM and we
have applied a derivation to their product. But then since ∇δ(f) =
δ(f) we can rewrite this

= δ(f)ω + f∇δ(ω).

5



The defining rule of an affine connection that ∇ is OM linear in its
subscript variable, and satisfies Leibniz rule in this sense. Note that
this rule can be used to calculate ∇δ on any symmetric function
of one-forms, and these are dense in the function space on TM in
various settings.

It follows that the action of ∇δ in local coordinates u1, ..., un is
described by a matrix ωkj of one-forms1 so that

∇δ(duj) =
∑
k

iδ(ω
k
j )dxk.

Writing the one-forms in the local basis du1, ..., dun one usually now
uses a negative sign

ωkj = −
∑
i

Γki,jdxi.

The reason for the negative sign is that we can extend the action of
∇δ to act on vector fields (which in some sense would have been a
more familiar starting place), and the fact that the pairing between
one-forms and vector fields is natural means it is invariant under
this flow on the tangent bundle. Thus

∇δ〈dui,
∂

∂uj
〉 = 〈∇δ(dui),

∂

∂uj
〉+ 〈dui,∇δ(

∂

∂uj
)〉

and the expression on the left side being the derivative of 0 or 1 is
equal to zero.

1We’ll use a superscript for k only because this is how it later is used in Γkij in standard
notation, but the choice of using a letter as a superscript or subscript has no significance in
our treatment, and all systems of coordinates are arbitrary (not required to be ‘holonomic’)
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Such considerations determine exactly what the functions Γki,j must
be, as we may deduce from

∂

∂k
gij =

∂

∂k
〈dui, duj〉

= 〈∇ ∂
∂uk

dui, duj〉

+ 〈dui, ∇ ∂
∂uk

duj〉

= −
∑
s

Γski〈dus, duj〉 −
∑
s

Γskj〈dus, dui〉

= −
∑
s

Γskigsj −
∑
s

Γskjgsi

.

From symmetry of both g and Γ in its subscripts (discussed else-
where) one obtains Γkij as the solutions of the linear equations 2

2
∑
l

glrΓ
l
jk =

∂

∂uk
grj +

∂

∂uj
grk −

∂

∂ur
gjk.

which can be obtained as a linear combination of three cyclic rota-
tions of the indices in the earlier equation.

One consequence3 is that if we write the volume form locally as
hdu1∧ ...∧dun then just as the divergence of ∂

∂ui
is expressed as the

action by multiplying this form by the eigenfunction

∂

∂ui
log h,

when we calculate the divergence of an arbitrary local vector field
δ =

∑
ci

∂
∂ui

we obtain

div(δ) =
∑
i

ci
∂

∂ui
log h

=
∑
i,j

ciΓ
i
ij

= trace∇(δ)

.

2see Wikipedia
3see online notes by Min Ru at Houston University
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Here ∇ is the action on vector fields (conjugate to the action on one-
forms by the isomorphism between them coming from the metric),
and ∇(δ) is the OM linear map sending a vector field v to the vector
field ∇v(δ).
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Geodesic flow.

The geodesic flow is the vector field, let us call it φ, on TM coming
from directional derivative. It assigns to a function f the function
df viewed as a function whose domain is the tangent bundle.

In turn, to a closed one-form ω = df on M viewed as a particular
type of function on TM, it assigns

∑
∇ ∂

∂ui

(f)⊗dui where the tensor

is a symmetric tensor (but if ω is not closed it will not in general be
symmetric).

In higher degrees the action is determined by Leibniz rule, at least
on the symmetric algebra sheaf.

Thus, the geodesic flow is a derivation whose restriction to the sym-
metric algebra sheaf OM ⊕ ΩM ⊕ S2(ΩM)⊕ ... increases degrees by
one.

The image in M of an orbit of the geodesic flow in TM is a geodesic
in M.
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The Euler equations in terms of E and F.

The ‘curl’ of a vector field corresponds under the isomorphism be-
tween vector fields and forms to the deRham differential

Λ1ΩM → Λ2ΩM .

In many situations it makes sense to choose a one-sided inverse of the
Laplacian, a function τ with domain of definition the image of div,
such that identity = ∆ ◦ τ. This follows in some situations from the
Biot Savart calculation (subsequent to Proposition 3) above. Also,
in analytic situations or algebraic situations where it makes sense to
consider a single origin and a radial function r, harmonic functions
are a complement to multiples of r2 and again the Laplacian is
surjective, this time with one-sided inverse τ so that

identity = ∆ ◦ τ.

In such analytic (or formal or algebraic) cases one can take τ to be
r2 times the inverse of grad ◦ div ◦ r2.
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When M happens to be compact, the divergence operator cannot
be surjective (see the remark following Proposition 1). Assume now
that we have found such a τ : OM → OM satisfying the rule that

∆ ◦ τ − identity is zero on the image of div (1)

It is immediate that the two functions

E = grad ◦ τ ◦ div

F = 1− E
satisfy the three rules E + F = 1

0 = div ◦ F
0 = curl ◦ E

(2)

Conversely, from these equations (2) about E and F and the extra
assumption H1(M,R) = 0 one can deduce from curl◦E = 0 the rule
E = grad ◦ φ for some operator φ from vector fields to functions.
The rule (2) gives div = div ◦ grad ◦ φ so the kernel of φ is
contained in the kernel of div and there is a τ with φ = τ ◦ div and
div = div ◦ grad ◦ τ ◦ div which is a reformulation of (1), showing
that τ is a one-sided inverse of ∆ = div ◦ grad when restricted to
the image of div as required.

This shows

4. Proposition. If H1(M,R) = 0 then there is a bijection between
pairs E,F of real linear operators satisfying (2) and real linear op-
erators τ satisfying (1).

Assume now that E,F are as in (2). Let us define the corresponding
Euler equations for a time zero divergence free vector field v to be
the condition that the once extended in time to a time-dependent
vector field, v satisfies

d

dt
v = −F∇v(v). (3)

11



I have stated the equation as a type of definition only because I’ve
included the role of the operator F in the formula, rather than
in each case to remark that one or another maximum principle or
boundary condition implicitly specifies the correct ‘divergence free
part’ of self-directional derivative. Note very clearly that this is then
just an ordinary differential equation.
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Conservation laws.

If w is any divergence free vector field∫
M

〈F∇v(v), w〉η =

∫
M

〈∇v(v)− E∇v(v), w〉η.

If M has trivial first deRham cohomology we may write E∇v(v) as
a gradient

E∇v(v) = ∇(p)

and then ∫
M

〈E∇v(v), w〉η

=

∫
M

〈∇p, w〉η

=

∫
M

〈dp, w〉η = 0

by Proposition 2, since w is divergence free.

This shows

6. Proposition When v satisfies the Euler equation, then for any
w compactly-supported and divergence free, if 0 = H1(M,R) then∫

M

〈 d
dt
v, w〉η =

∫
M

−〈∇v(v), w〉η.

Note that what this means is that on average (after integrating
against η ) the flow on vector fields which occurs in the Euler equa-
tion cannot be distinguished from its divergence free part (the result
of applying F ) Finally

7. Proposition If v is divergence free and w is a compactly sup-
ported vector-field then

0 =

∫
M

〈∇v(w), w〉η.
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Proof. This is

1

2

∫
M

∇v〈w,w〉η =
1

2

∫
M

v(〈w,w〉)η

which is zero by Proposition 2.

The combination of Proposition 6 and Proposition 7 with w = v
shows that whenever

∫
M
〈 d
dt
v, r〉η = d

dt

∫
M
〈v, v〉η, that is whenever

we may commute the time derivative with the integral, the ‘energy’∫
M
〈v, v〉η is constant as a function of time.

Proposition 7 is in some sense a traceless condition, it says that
on average the action of covariant differentiation along a divergence
free vector field has no ‘radial’ component. It is stronger than a
traceless condition since it implies vanishing of all eigenvalues or
eigenfunctions rather than their sum, but weaker since it requires
averaging over M.

By contrast, another traceless condition applies to ∇v(w) for each
fixed divergence-free w, it is traceless on the nose as a linear func-
tion of v, being true point-by-point rather than only after being
integrated against a divergence-free vector feld; yet not implying
separate eigenvalues are zero.
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Power series methods (formal existence).

Now let’s discuss a little the choice of τ or equivalently of the de-
composition 1 = E + F.

We may iterate the Euler equation (3) to obtain a recursive equation
for all the higher time derivatives of v

d

dt

α

v = −
α−1∑
β=0

(
α− 1
β

)
F∇ d

dt

β
v
(
d

dt

α−1−β
v) (4)

This may be unwound into a formal power series

v(t) =
∞∑
i=0

ai
i!
ti

where the coefficient ai is the right side of (4) substituted recursively
to remove all occurrences of d

dt

u
for all numbers u besides zero.

Also, if one wishes, one may write E,F in terms of the single
operator τ , and if one has chosen an explicit formula for τ, ei-
ther the Biot-Savart formula described above, or the formula τ =
r2(grad ◦ div ◦ r2)−1 of formal power series, the ai become explicit
expressions either involving the integrals in the Biot Savart law, or
involving the linear algebra finite-dimensional matrix inverse degree-
by-degree of the action of ∆ ◦ r2 on a graded polynomial algebra.

The uniqueness of τ is only up to adding a function from the image of
div to the space of harmonic functions; and if we independently ad-
just every occurrence of τ in such a formula, it gives another formal
solution to the Euler equation. These solutions are all very indepen-
dent of each other. The sense in using one fixed function τ in every
occurrence is that if one is working with compactly supported vector
fields with a boundary condition satisfied by no nonzero harmonic
functions, then τ is uniquely specified.

In the case of Euclidean space and compactly supported vector
fields, on can uniquely write

τ = r2(grad ◦ div ◦ r2)−1 + h
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where h is a function from the image of div to the harmonic func-
tions, chosen so that the sum which is τ satisfies the boundary con-
dition of being compactly supported. Then each time τ is applied in
the formula (4) to a function f h(f) will agree with −r2(grad◦div ◦
r2)−1(f) except on a compact set, and by the maximum principal
will be bounded by the maximum value of this function on any par-
ticular fixed larger compact set. Then the sum can have no value
larger than twice this maximum.

The same consideration applies more generally to any choice of τ
which may then be made without regard to the boundary conditions,
and adjusted by the addition of an operator from the image of div to
harmonic functions, and the adjustment does not significantly affect
the convergence bound of each separate occurrence of τ in (4).
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Evidence of non-existence of global solutions in the generic
three-dimensional case

It is very very likely that there are counterexamples to existence in
R3 of all-time solutions for the case of analytic rapidly decreasing
initial conditions.

When we do correctly iterate the derivation v 7→ −F∇v(v), in the
first instance just removing F altogether, we have self-directional
derivative.

Then the second derivative of v is −∇v(−∇v(v)) − ∇∇v(v)(v) and
so-on.

It is best to write the operation (w, v) 7→ ∇v(w) as

w ∗ v = ∇v(w)

Then the failure of associativity is in the formula

(a ∗ b) ∗ c− a ∗ (b ∗ c) = hess(a)(b, c)

where hess(a) is the vector whose entries are the Hessians of the
entries of a.

That is,
∇c(∇b(a)) = ∇∇c(b)(a) + hess(a)(b, c).

Now, we are not allowed to ignore all higher than linear terms
(quadratic etc) exactly because of this Hessian term.

If we could, then we could write each term which looks like some
associative word in the single letter v and the operation *, in the
form

v ∗ (v ∗ (v ∗ (...v)))

The point is that the coefficient is now something like (i+ 1)! if i is
the depth of the word.
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This means that if we look at one point, before we’ve adjusted by
adding in the gradient of the harmonic function or the Hessian terms
anywhere, we have something which is a power series in t along with
radius of convergence at most 1, generically. Barring any unseen
relations here.

Now, here is where the case of R2 is strikingly different than R3.

For ‘linear’ vector fields (where the coefficients are just linear func-
tions of u1, ..., un the coordinates), we have the following:

divergence -free linear vector fields↔ traceless matrices

grad’s of homogeneous harmonics of degree 2↔ traceless symmetric matrices

Now, if all we do is start with a divergence free vector field, look at
its linear part, all we are doing is that if we view v as the operation
sending x to v ∗x, then the ∗ operation is just matrix multiplication

And the map we are iterating is just alternating

squaring

subtracting the 1/n times the trace of the matrix, times the
identity.

Now, in case n = 2, this operation

M 7→M2 − (1/2)trace(M2)I

is finite order, in the sense that starting with any traceless matrix,
in one iteration it becomes symmetric (it is zero if you start with a
nilpotent matrix). And in the next step it becomes zero..

Then it does not much matter what gradient of a harmonic function
you add, that is, what symmetric matrix you add.

That is to say, you do not need to be at all careful to get convergence,
there is no interaction between the gradient of the harmonic function
and the underlying self-directional derivative.
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The same calculation with n = 3 shows that there is now a really
stringent demand on the linear part of the gradient of the harmonic
function.

If we start with a compactly supported smooth vector field with
lots of linear regions in different places, do we really expect that the
error term in the failure of associativity will combine exactly with
the symmetric matrix, to equal the symmetric part of M?

And if this does not happen, then what we are seeing is terms added
together indexed by a tree, and this is a tree whose branching start-
ing at any point goes by more than the factorial function.

Now, the thinking is mixing up analytic and smooth arguments. It
is possible for the radius of convergence to be finite and for there to
be no singlarities, they could be non-real singularities, or the Taylor
series could have zero radius of convergence and be unrelated to the
known local solutions.

But it is likely that the finite radius of convergence matches the
known local solutions, and that the failure of finiteness of the radius
of convergence really means that things tend to infinity.

And that for general rapidly vanishing analytic solutions, it would
be too much of a coincidence to expect the gradients of the harmonic
functions plus the error term from associativity to always cancel, and
it is likely that when they do not you get a radius of convergence
near 1 which represents actual failure of the solution to extend even
as a real smooth solution.
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Uniqueness of solutions of Euler’s equations.

Here is a clever proof of uniqueness which I found in Majda’s book
(I do not know the full origin of it). If there were two solutions
with the same initial condition, call these v, v + ε, in the compactly
supported case, say, then we can use Proposition 5 which says that
F does not matter, and proposition 6, vanishing of eigenfunctions.

We write
d

dt
ε = −F (∇v+ε(v + ε)−∇v(v))

and then by divergence-freeness of ε as in Proposition 5 we may
remove the occrrences of F as long as we pair with a divergence free
field, multiply by η and integrate over M , giving∫

M

〈 d
dt
ε, ε〉η =

∫
M

〈−∇v+ε(v + ε) +∇v(v), ε〉η.

The clever step is to rewrite the first argument

∇v+ε(v + ε)−∇v(v) = ∇v+ε(ε) +∇ε(v).

Then

〈 d
dt
ε, ε〉 = 〈−∇v+ε(v), ε〉 − 〈∇ε(v), ε〉

and Proposition 6 says that the first term integrates to zero against
η, giving ∫

M

d

dt
〈ε, ε〉η = −2

∫
M

〈∇ε v, ε〉η,

which is bounded above by a constant C times 〈ε, ε〉. In coordinates
u1, ..., un the constant C can be bounded in terms of the maximum
magnitude on the compact support set of all the i ∂

∂uα
ωβ,γ and on the

coefficients of v and their partial derivatives in the basis ∂
∂uα

. Thus

| d
dt
log(〈ε, ε〉)| ≤ C
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One can finish the uniqueness proof with an very elementary propo-
sition about real functions

8. Proposition. Suppose f(t) is differentiable real-valued function
and there is a number C such that | d

dt
logf(t)| ≤ C at all points t

where f(t) 6= 0. Then the closed zero set {t : f(t) = 0} is also open,
so it is either empty or the whole of R.

Proof. We know the set of t such that f(t) = 0 is a closed set. If
it were not open there would be points t with f(t) 6= 0 tending to
a point a with f(a) = 0. Then logf(t) would tend to infinity as
t → a and its derivative would be unbounded in magnitude by the
mean value theorem. That then finishes the uniqueness proof in the
textbook – we’ve introduced the proposition above as a replacement
of an estimating technique of Gronwall.

The main lessons so far seem to be that it is not difficult to give a
sort of formal analytic expression for the soltion that is, for instance
actually a formal series if the initial time zero vector field is analytic;
yet the convergence issue is complicated.

The complication about the choice of harmonic part in each step of
the recursion is nearly trivial, it can be removed just by integrating
against a divergence free vector field. But when one looks at this, as
the steps of the recursion comine, there is not yet known a clear way
to remove the second and higher order effects which would affect the
self-directional derivatives if the harmonic error were not actually
subtracted away point by point.

The same is true, more powerfully, for the projection onto the di-
vergence free part. That the projection acts as the identity if one is
only going to integrate against a divergence free vector field, but this
need not be true of the second order effect if the unprojected vec-
tor field were used later as one of the arguments in self-directional
derivative. I am not saying that this issue is impossible, only that
it is very complicated.
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Geodesic flow and directional derivative.

This section attempts to clarify the relation between geodesic flow
and directional derivative. There is not yet any particular meaning-
ful observation related to the self-directional derivative which occurs
in Euler’s equations.

Let’s return relate the geodesic flow on the tangent bundle TM with
directional derivatives of vector fields.

Let us work analytically for reasons of simplicity. As I’ve mentioned
elsewhere, the cotangent sheaf of TM is spanned by OM and ΩM

and therefore the pushforward to M is

(OM ⊕ ΩM ⊕ S2(ΩM)...)d′OM + (OM ⊕ ΩM ⊕ S2(ΩM)...)d′ΩM

where we use d′ to refer to the deRham differential on TM. The sum
is not direct, however the summand

ΩMd
′OM +OMd′ΩM

is unaffected as a set by the removal of the coefficient sheaf OM in
the second summand, and then becomes a direct sum. That whole
summand (which is now a direct sum) is a copy of one forms on
TM which restrict to zero as one forms on the zero section M , then
restricted to zero in the sheaf sense. It is the sheaf of first principal
parts of ΩM and in this way can be interpreted as a residue.

Contraction along geodesic flow is a linear map from this to OTM
which gives a map over OM to the pushforward of OTM which is

OM ⊕ ΩM ⊕ S2(ΩM)⊕ ...

The linear map sends the whole of the principal parts summad to
S2ΩM . On ΩMd

′OM ∼= Ω⊗2
M the map is merely symmetrization, this

corresponds to the fact that OMd′OM is a summand of the whole
first factor in the main decmposition, and this is just the push-
forward of the pullback of one-forms (the ‘horizontal’ one forms)
upon which contraction along geodesic flow is the identity on closed
forms. That is to say, contraction along the geodesic flow sends d′f
to df which does nothing to a function f constant along tangent
bundle fibers except to replace the symbol d′ for the tangent bundle
deRham operator with that for the manifold M itself.
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Since the principal parts summand generates ΩTM the whole in-
formation about the action of geodesic flow is then determined by
the map OMd′ΩM → S2ΩM . And this is determined by the map
d′ΩM → S2ΩM sending d′ω to ∇(ω), for each particular one-form
ω on M , interpreted not as a linear map from the tangent sheaf to
the cotangent sheaf, but as an element of the tensor square of ΩM

which happens to land in the symmetric tensors.

Let’s denote by φ the geodesic flow vector field on TM. The restric-
tion of the contracting map iφ to OMd′ΩM is OM linear, and the
further restriction to d′ΩM , is the connection ∇.

It can give insight if we consider the restriction not to d′ΩM but
to the larger OMd′ΩM . This is the linear map sending

∑
gid
′ωi to∑

gi∇(ωi) for one-forms ωi on M.

There is the relation between d and d′ coming from the fact that df
is a function with domain TM and d′ satisfies Leibniz rule

d′(hdf) = hd′(df) + (df)d′h.

Or more generally for ω a one-form on M

d′(hω) = hd′(ω) + ωd′h.

From this
∇(hω) = iφ(d′(hω))

= iφ(hd′(ω) + ωd′h)

= hiφ(d′(ω)) + ωiφ(d′h)

= h∇(ω) + ωdh

.

The product ωdh here is the symmetric tensor 1
2
(ω⊗ dh+ dh⊗ω).

Thus it is consistent and correct to interpret the linear map which
is the restriction of the contraction iφ along geodesic flow φ as an
extension of ∇ to an OM linear map OMd′ΩM → S2ΩM .

23



Covariant derivatives and directional derivatives.

The relation between the covariant derivatives of tangent and cotan-
gent bundles ought to eventually relate ∇(ω) with self-directional
derivatives of vector fields that occur in the Euler equations. Let
us attempt to understand this some more. In local coordinates
u1, ..., un we may start with the adjunction for each fixed vector
field δ,

〈∇δ(dup),
∂

∂uq
〉 = −〈dup,∇δ(

∂

∂uq
)〉

which holds since the 〈dup, ∂
∂uq
〉 are sent to zero under ∇δ.

Writing in the same coordinates u1, ..., un the equivalent tensor (we’ll
use an equals sign as an abuse of notation)

∇(dup) =
∑
i

∇ ∂
∂ui

(dup)⊗ dui

we have for indices α, β that

〈∇(dup),
∂

∂uα
⊗ ∂

∂uβ
〉

=
∑
i

〈∇ ∂
∂ui

(dup)⊗ dui,
∂

∂uα
⊗ ∂

∂uβ
〉

=
∑
i

〈∇ ∂
∂ui

(dup),
∂

∂uα
〉〈dui,

∂

∂β
〉

This is zero unless β = i in which case it is the single term

〈∇ ∂
∂uβ

(dup),
∂

∂uα
〉.

Now applying the adjunction this is

−〈dup,∇ ∂
∂β

(
∂

∂α
)〉.

If one now calculates for v =
∑

α aα
∂
∂uα

, w =
∑

β bβ
∂
∂uβ

〈∇(dup), v ⊗ w〉
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is not quite OM bilinear in v, w, It evaluates to

−
∑
β

bβ〈dup,∇w(
∂

∂uβ
)〉

and so

〈∇(dup), v ⊗ w〉 = −〈dup,∇w(v)−
∑
i

w(ai)
∂

∂uj
〉.

The second term would be the value of ∇w(v) if u1, .., un were Eu-
clidean coordinates.

Thus we have seen that when we apply the contraction operator iφ
with φ the geodesic flow to a function f on M viewed as a function
on TM constant on tangent space fibers, we get the answer of df,
and in turn if we apply iφ it to a one-form of the type d′ω with ω a
one-form on M we get ∇(ω), the action of covariant differentiation
on the one-form ω.

In the case ω = dup is a closed form, the result ∇(dup) is adjoint
to a bilinear expression which might be interpreted to be the the
non-Euclidean part of directional derivative.

The action of iφ is OTM linear and therefore the action is OM linear
on sums of expressions of the type ad′ω with a functions on M and
ω one-forms on M. But this is linearity with respect to the action
by multiplications which affect a, not b, and does not commute with
the isomorphism of ΩM to its image d′ΩM viewed as one-forms on
TM (with ΩM viewed as functions).

The restriction of iφ to d′ΩM while not linear in this sense, is equal
to the action ∇ of covariant differentiation on one-forms, sending
closed one-forms to symmetric tensors in ΩM ⊗ ΩM .
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The relation with Burger flow

If v is a vector field on M, then the time-dependent vector-field, if
it exists, determined by

dv

dt
= −∇v(v)

can represent the effect on tangent vectors (which are implicitly
measured relative to the zero-section, that is, implicitly stationary
coordinates), of a flow which is forceless.

The Euler equations have another term

dv

dt
= −F ◦ ∇v(v) = −∇v(v) + E∇v(v)

= −∇v(v) + grad ◦ τ ◦ div(∇v(v)).

When the Biot-Savart calculation converges, the second term is ex-
actly the constant 1

(n−2)Area(Sn−1)
times what would be the electro-

static vector field from a charge distribution of density function
div∇v(v), which is minus the divergence of the burger flow. That is,
τ gives the electric potential function, and the term is the gradient
of that. Now, the divergence of the Burger flow would be the rate of
accumulation of charge; so our electric field strength is proportional
to the rate of accumulation of charge, not the amount of charge.

I believe then that the Euler equations are a specialization of the
electrostatic equations involving a field of particles such as electrons,
with each particle having the same mass and charge as all the others,
or rather a distribution of that type. That is, once the vector field
v and its derivative d

dt
v both happen to be divergence free at one

moment of time, in the more general electrostatic setting, purely
inertial flow, they necessarily remains so for all time. This should
be checked to see if I have made any mistake. As uniquness and
existence, and persistence of analyticity are true for any distribution
of a finite number of particles, in the case of finite energy, one might
approach such results for the continuous case by a limiting argument.

We can analyze the term div ∇v(v) by thinking of the divergence
of a vector field v as the trace of the linear operator ∇(v). From
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Leibniz rule,
div∇v(v) = trace∇−∇v(v)

= ∇vtrace(∇−v) + trace∇∇−v
v

As v is divergence free for all time when it solves the Euler equations
(once the initial time-zero vector field is divergence free) the first
term is zero and we have

= trace∇∇−v
v

= trace(∇v)2.

Thus harge distribution of density function trace(∇v)2. For example
in three-dimensional space, it would be the integral of the inverse-
squared distance to the charge, times this constant.

Thus, one way of intuitively understanding the Euler equations is
to think that the departure from a purely inertial flow, caused by
the pressure in an incompressible fluid, follows exactly the same
equations as if the force were caused by an electrostatic charge dis-
tribution of magnitude given by trace(∇v)2. 4

4It is curious to wonder whether the reverse is also true, whether the equations of elec-
trostatics can be interpreted by visualizing an incompressible fluid, and whether there is any
useful relativistic formulation, whereby what are ‘stationary coordinates’ for one viewer are
‘moving coordinates’ for the other, such that the notion of an incompressible fluid, versus an
inverse-square law force field, are interchanged between one viewer and the other.
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