
Deformation theory

This is to attept to find a generalization of Kuranishi’s theory of
deformations to singular projective varieties, as suggested by David
Mond.

Let Y be an irreducible scheme of finite type over C. Suppose that
the associated reduced scheme is a possibly singular projective va-
riety. Let P be the radical ideal sheaf and K the field of rational
(=meromorphic) functions on the reduced subscheme defined by P .
Let YP be the localization of Y at the radical. Note that Γ(YP ,OYP

)
contains a field K0 reducing isomorphically to K (what is called the
‘coefficient field’ in Cohen structure theory).

Definition. We’ll say Y is a deformation if it satisfies these prop-
erties.

i) Y is flat over Γ(Y,OY ).

ii) The natural map induced by the field isomorphism K0 → K
Γ(Y,OY )⊗C K → Γ(YP ,OYP

) is an isomorphism.

Note that we are really referring to an infinitesimal deformation in
this section, however we omit writing ‘infinitesimal’ only for typo-
graphical reasons. Also we have not said what Y is a deformation
of.

Definition. If X and Y are two deformattions, then we will say
that Y is a deformation of X if we have in mind a C algebra ho-
momorhism Γ(X,OX) → Γ(Y,OY ) and an isomorphism between Y
and the base extension of X along this map of finite-dimensional
local C algebras.

Let us attempt to construct an initial object in the category of defor-
mations of Y which happen to have that the kernel of Γ(X,OX) →
Γ(Y,OY ) is semisimple. Let π be the map sending Y to a point, and
let ∆ be the defining ideal sheaf of the diagonal in Y × Y viewed as
a quasicoherent sheaf on Y (pushed forward) via the first projection
Y × Y → Y. Let Y red be the reduced subscheme defined by the
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radical. Consider the composite

C⊗C OY ⊂ OY ⊗C OY

→ (OY ⊗OY )/∆
i+1

= (1⊗OY )⊕∆/∆i+1

→ 0⊕∆/∆i+1

where the last map projects onto the second factor. This is not a
map of coherent sheaves over OY , only of complex vector spaces.
Nevertheless, we can compose the map induced by this on global
sections H0(Y,OY ) → H0(Y,∆/∆i+1)) with the Yoneda action

Ext1Y (∆/∆i+1,Ored
Y ) → HomY (H

0(Y,∆/∆i+1), H1(Y,Ored
Y ))

to obtain a map

Ext1Y (∆/∆i+1,Ored
Y ) → HomY (H

0(Y,OY ), H
1(Y,Ored

Y ))

for each i = 1, 2, 3, ... let Ei be the kernel so that

0 → Ei → Ext1Y (∆/∆i+1,OY red) → HomY (H
0(Y,OY ), H

1(Y,OY red))

is exact.

The inclusion of Ei is an element of

HomC(Ei, Ext1Y (∆/∆i+1,OY red)) ∼= Ext1Y (∆/∆i+1,OY red ⊗C Êi)

corresponding to an extension of coherent sheaves on Y

0 → OY red ⊗C Êi → M → ∆/∆i+1
→ 0.

Let A be the inverse image of 1⊗OY under

OY ⊕M → OY ⊕∆/∆i+1 =
OY ⊗C OY

∆i+1

A is a sheaf of rings providing a scheme Z containing Y as a sub-
scheme. Also OY ⊕M is spanned by A as OY module so there is a
surjective map

OY ⊗C A
ǫ
→ OY ⊕M.
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If we let ∆′ be the defining ideal sheaf of the diagonal Y in Y × Z
then the kernel of ǫ is a complement of 1⊗N in (∆′)i+1 +OY ⊗C N

where N is the copy of OY red⊗Êi which now serves as the ideal sheaf
on Z defining Y. It need not be a sheaf of ideals on Y ×Z. The image

of 1⊗ Êi in M ⊂ OY ⊕M is in embedded copy, and we now want

to modify Êi by choosing a complement for its intersection with the
image of (∆′)i in OY ⊕ M. Reducing modulo this complement we

obtain what we call Fi, a homomorphic image of Êi.

If we start again using Fi in place of Êi what will happen is that
the kernel of OY ⊗C OZ → OY ⊕M will now be an ideal sheaf on
Y × Z and it will in fact be (∆′)i.

The replacement of Êi by Fi does not reduce the set of extensions
that are possible; that is, all but finitely many Fi are zero, and
writing F = ⊕∞

i=0Fi there is now a universal scheme X and an exact
sequence

0 → F ⊗C OY red → OX → OY → 0

This induces an exact sequence of global section algebras

0 → F → Γ(X,OX) → Γ(Y,OY ) → 0

and X is flat over Γ(X,OX) and satisfies that the localization at the
radical is the base extension of the ‘coefficient subfield’ copy of the
rational function field of Y red along the inclusion C → Γ(X,OX).

Let’s verify that the sheaf of algebras A really does define a defor-
mation Y → X as we have defined it. First we will treat the case
when Fi is all of Êi.

The definition of Ei as the kernel is chosen to ensure that if we
choose basic functionals Êi → C inducing Êi ⊗ OY red → OY red the
induced extension

0 → OY red → B → OY → 0

where B is the corresponding homomorphic image ofA, is split. This
being so for every functional implies that A → OY is surjective as
a map of sheaves of complex vector spaces, and therefore is onto on
global sections. From this and the fact that Y satisfies our definition
of a deformation will imply that also X does.
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1. Question. Is X is the universal such extension? That is, it is
an initial object in the category of deformations of Y whose global
section map Γ(X,OX) → Γ(Y,OY ) has semisimple kernel?

If this is true, any ‘deformation’ of Y as we have defined it arises
by repeatedly passing to this universal deformation finitely many
times, each time reducing reducing modulo a vector subspace of F,
and finally at the end performing a base extension.

There is a surjectivity theorem that ensures that no non-surjective
base extension are needed until the last step.

2. Question. Is there a universal bound n depending only on Y red,
to the number of times it may be required to take the reducing
subspace to be nonzero, and thereafter one need only iterate the
universal extension procedure?

3. Question. Is the map socleΓ(X,OX) → socleΓ(Y,OY ) zero? If
so there should also be a uniqueness assertion; if not, it means that
one should modify F further to attempt to regain uniqueness.

4. Question. When this is continued past the number n of question
one, for every initial choice of a sequence of n subspaces of the F, is
the completion a finitely generated formal power series ring modulo
an ideal?

5. Question. If so, can the generators be taken to have nonzero
radius of convergence?

It would follow if the answer to questions 1,2,4 and 5 is ‘yes’ that the
base of any infinitesimal deformation is a base extension given by a
map from the base of the deformation to an analytic space which is a
finite union of bundles where the base is an iterated fiber bundle with
levels locally closed smooth submanifolds of Grassmannian varieties
and fibers possibly singular Stein spaces.
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Added note about deformation theory

Here is an explanation for why T 2 was ever needed:

The issue is that the most straightforward and natural universal ex-
tensions are the surjections A → B where the kernel N is semisimple
and satisfies that N → ΩA ⊗ B is injective.

It is possible to factorize any extension with semisimple kernel into
ones like this unless one reaches an intermediate stage C where the
actual deRham differential

d : C → ΩC

has kernel larger than C.

And that is where the issue lies, which one has to get around some-
how.

If one presents a ring C as C[x1, ..., xn] modulo an ideal I, then the
condition for dh to be zero in the differentials of C[x1, ..., xn]/I is

dh =
∑

i

aidfi +
∑

bijxjdfi

The issue is, does this really imply h is in I? Replacing h by h −∑
i aifi as one may, one gets

d(h−
∑

i

aifi) =
∑

i

(−ai +
∑

bijxj)dfi

and one is asking is there a polynomial h−
∑

i aifi with all its partial
derivatives in I, but not itself in I.

Then one can rename this h, and just take I to be the ideal generated
by the ∂h/∂xi.

If it happens that h(0) = 0 and h is not contained in the ideal in the
complete local ring at 0 generated by its own partial derivatives, then
by reducing modulo a large power of the maximal ideal (x1, ..., xn)
one has found a finite dimensional local algebra C over the complex
numbers for which the kernel of d : C → ΩC is larger than the
scalars.
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This is how a defining equation h of a hypersurface whose Milnor
numbe is not the same as its Tjurina number, related to the difficulty
that required the introduction of T 2 in deformation theory.
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