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Abstract. We consider the Burau and Gassner representations of the braid
groups B„ . A sufficient condition for faithfulness, involving just a pair of arcs,
is shown to be necessary as well for all but at most two values of n. In the
Burau case, this implies nonfaithfulness for n > 10 .

Alexander showed in [6] that any knot K can be made by connecting the
ends of some braid b. The Alexander polynomial A(K) was defined in terms
of a certain matrix A of relations. In 1926, Alexander found that A(K) does
not uniquely determine the knot K [1].

Subsequently, Burau wrote down, for each braid b, a matrix of Alexander
relations of the form A(b) - 1 for the associated knot or link, such that the
matrix of a composite bb' satisfies

A(bb') = A(b)A(b').

For generic values of the variable, Burau's representation (modulo a line) is
Zariski dense, so its exterior powers are distinct irreducible representations.
Up to a constant, the Alexander polynomial is the alternating sum of their
characters on the positive braids, and, up to normalization, it agrees with the
unique extension to a virtual character on the braid group B„ .

The question of faithfulness of Burau's representation, equivalent to that for
A viewed as a virtual character, was then intensively studied first systematically
by Magnus and his students (see, for instance, Magnus' collected works [2]).
Some early attempts are now subsumed in Long's result that the faithfulness
of any representation can be detected on the center and any noncentral normal
subgroup of the pure braid group [3].

On the other hand, the sets of braids with given closure were found to be
equivalence classes under certain so-called Markov moves [4]. These issues
converge in Birman's monograph [5], which states that conceivably the Burau
representation could become unfaithful for n > 5 , and gives a rigorous proof
of the sufficiency of the Markov moves.
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672 JOHN MOODY

Here we will give a necessary and sufficient condition1 for the faithfulness of
the Burau representation and a related representation called the Gassner rep-
resentation. This paper was circulated in preprint form and delivered at the
Queen Mary College topology discussion group, and a talk in Bristol, except the
conditions were both included as open questions. We now include simple coun-
terexamples to the Burau condition, which I noticed in the week following the
second talk. Long and Paton have each, independently, found counterexamples
to the condition for smaller values of n .

Our best example is a somewhat complicated braid in Bio , which I reduced
to nine strands. This example was analyzed on the computer by Morton and
Strickland, using the algorithm of Morton and Short to calculate the 2-variable
polynomial. This verified that the braid was a Burau counterexample, gave the
first proof that the associated link is also not trivial, and showed that there are
braids in the kernel of the Burau representation which are not in the kernel of
Jones' representation. Conversely, results of Long show that for some compo-
nents of the Hecke algebra representation, the kernels contain the Burau kernel
[7].

In the work reported here, computers were not used. Between moving to the
United Kingdom in 1988, and writing down the 9-strand example in March, I
have not had any occasion to use or write any computer programs. It is reported
by some authors that the Gassner representation should be faithful for all n.
I will at least conjecture that no counterexample has fewer than a thousand
crossings, based on drawings by myself and Mark Paton, but nothing in our
work suggests that the situation could not change for much larger knots.

1. Introduction
In C x (-co, 0] = {(z, /•)} , consider the vertical lines z — 1,2, ... , n . We

shall think of a braid as the result of applying any bounded, level-preserving iso-
topy <P, to the embeddings of the lines which brings the endpoints in CxO back
to 1,2, ... , n in some possibly permuted order. Under this correspondence,
the so-called pure braids are the ones in which the associated permutation of
the endpoints is trivial. Two braids are thought to be equivalent if they differ
only by a bounded, level-preserving isotopy fixing the endpoints.

At level zero, the isotopy which creates a braid amounts to a motion of the
n distinct endpoints in C = C x 0. It is well known both that the braid can be
recovered up to equivalence from this motion, and that the motion extends to
a compactly supported isotopy of the identity diffeomorphism of C.

The composite of braids, once one has modified the second to be nontrivial

'To be precise, the condition is necessary and sufficient for all but at most two unspecified
values of n (see the statement of the Theorem). The higher commutators in the proof fill a gap in
my first draft, which was found by J. Birman. In an upcoming conference proceeding, J. Birman,
D. Long, and myself show that the analogous faithfulness condition for homology of a general
braid-equivariant local system works for all but at most 2{r — 1) values of n , where {r - 1) is
the faithfulness range of the braid action on the fiber of a fixed point. This gives a faithfulness
condition for the irreducible summands of the Lawrence representations, but not for all n .

In the Burau and Gassner cases (when r = 2), the higher commutators are superseded by a
geometric result of D. Long; by an ingenious argument, the D. Long and M. Paton paper actually
obtains necessary and sufficient conditions for all n . It is hoped that the Long-Paton method may
somehow supersede higher commutators for larger r, but this is not known. A unified treatment
of these further issues in a research paper is not currently available.
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FAITHFULNESS FOR THE BURAU REPRESENTATION 673

only when r < r\, r\ being chosen so that the first is nontrivial only for r > r\ ,
consists of the points of the first braid which are above level r\ , together with
the points of the second that are below.

It is helpful to imagine what you would see from an eye located at (z0, r0)
with Im(zo) < 0 and ro > 0. Projecting the braid C x 0 through all lines
through this point produces a photograph of the braid consisting of curves
Pi, ... , p„ emanating in order of angle from zn in the lower half-plane, and
ending at 1,2,... , n in some order. Naturally, we should choose the point
(zo, ro) to minimize the number of crossings we see. In fact, allowing an ad-
ditional compactly supported, level-preserving isotopy fixing the endpoints, we
can remove all crossings. Let the original motions of the endpoints extend to
an isotopy y/t(z) of the identity on C, which fixes all points as far away as
z0. Writing t = 1/(1 — r) and u = (r0 - r)/r0, the braid whose points are
(zo + u(y/i(tj + (1 - t)zo) - zo), r) will appear to have no crossings, as it will
project to the union of the curves

Pj(r) = Vi(tj + (l -t)z0),       j = 1,2, ... , n.

These curves approach z0 as r tends to -oo, and take values of 1,2, ... , n
when r = 0.

In the discussion below, if p is any smooth arc in C - {1, ... , n) from
zo to one of 1, ... , n , the symbol d(p) will denote the smooth simple closed
curve based at zo which traces the boundary of a small neighborhood of p in
the counterclockwise direction.

Here is Kohno's definition of the Burau matrix [8]. For any smooth simple
closed curve y based at zo in C - {1,...,«}, let

w(y) = f(z - l)Al • • • (z - nf" dz.
Jy

Although there are infinitely many choices of y, and the functions w(y) even
span an infinite-dimensional complex vector space W, this vector space is free
of finite rank n when viewed as a module over the ring R of finite Fourier
series in the variables Xi, ... , X„ .

Letting Et denote the straight path from z0 to i, one observes that the
functions e, = w(d(Ei)) form a basis of the module. Let Wj(y) be the ith
coefficient of w(y) in the basis. The action of a braid b whose semi-infinite
strands appear as the finite arcs p\, ... , p„ in C- {I, ... , n) is given on the
basis elements by the formula

bej = W\(d(px))ei + ■■■ + w„(d(p„))e„ .

This extends to an action on all of W by the following rule of semilinearity:
the action of b is C-linear, and if w £ W and r £ R, then

brw = brbw,

where br is obtained by replacing each occurrence of Xj in r by Xp (0).
Up to isomorphism, these rules describe the so-called Gassner representation

at any system T\, ... ,Tn of complex numbers whose permutations are all in-
duced by automorphisms of C, once we choose Xj such that 7) = elnik>. This
representation is semilinear for the action of the braid group by a suitable group
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674 JOHN MOODY

of Galois automorphisms. As a special case, we obtain the Burau representation
up to isomorphism when all 7} equal a fixed complex number T.

One can read-off the Wj(y) by the type of calculation formalized by Fox. Let
/ be the characteristic function of the upper half-plane IcC. Let logo De
the principal branch of log, a single-valued function with a discontinuity along
the positive real axis, satisfying log(/7r) = -1. Let h(z) be the multiple-valued
function on C-{1, ... , n] given by h(z) = Ai(log(z- l)-logo(z- l))-l-h
A„(log(z - n) — logo(z - «)), and for j = I, ... , n let coj be the differential
form

coj = (\/2ni)f(z)eh^(d log(z - j) - dlog(z - j)),

which becomes well defined on a suitable cover. Reading around a smooth
simple closed curve y based at z0 , the integral of ojj tabulates Wj(y), counting
plus or minus some monomial in the e2nils each time y crosses the verticle ray
Re(z) = j, lm(z)>0. In fact Wj(y) is e~2*'(Xl+'"+W times this integral.

In particular, y cannot be isotoped off the vertical ray, by an isotopy fixing
the basepoint, unless Wj(y) is zero. In other words, Wj(y) is an obstruction to
isotoping y not to intersect the ray Re(z) = j, Im(z) > 0.

Since there is no possibility of confusion, we write Wj(p) = Wj(dp) whenever
p is a path from zo to one of 1, 2, ... , n . When j ^ p(0), one can use p
itself for the path of integration, or the strand projecting to p in some braid of
interest, provided one is willing afterwards to multiply by (1 - e21"^).

2. Result
From now on let Xi, ... , X„ be complex numbers such that

' (a) If the Tj — e2niX> are unequal, any permutation among the
is induced by an automorphism of C.

(*) \ (b) The Tj - 1 do not generate the unit ideal in the subring of
C generated by the 7} and TJX.

Condition (a) guarantees that we can calculate the matrix of a product of braids
from the matrices of the separate braids, while (b) allows us to forego making
separate provision for the case j = ps(0), which seems to have no clear geomet-
ric interpretation anyway. For, Wj(ps) = 1 modulo Ti - I, ... , T„ - I then,
so when (b) holds it cannot be zero, consistent with the fact that ps cannot be
isotoped away from its own endpoint.

Let us begin again with the situation where we are considering a loop y in
C - {I,... , n} based at zo. Assume now that, among all the points on our
y, zo is a point of minimum possible real-coordinate value. In this situation,
we assert that, for all but at most three values of n , the obstruction Wj(y) is
effective if and only if the Gassner representation of the braid group B„ is a
faithful representation.

To be more precise, and to decrease the gap of three to our knowledge, it
helps to now restrict attention to y of the form dp, where p is a simple path
from zo to one of 1,2, ... , n in C - {1,...,«} , and z0 is again a point
of minimum real-coordinate value on p . Let us view j as a variable which
ranges over the numbers 1, 2, ... , n .
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FAITHFULNESS FOR THE BURAU REPRESENTATION 675

Theorem. Let Tx, ... ,Tn be either variables or complex numbers subject to
(*). As usual, set the Xs in the definition of the Wj(p) = Wj(dp) such that
glniX, _ 7^

(i) If Wj(p) is an effective obstruction to isotoping any such p in C -
{1,... , n], by an isotopy fixing z0, not to intersect the ray Re(z) = j, Im(z) >
0, then the Gassner representation of Bn is faithful at Ti, ... , T„.

(ii) If Wj(p) is not an effective obstruction to isotopy, then the Gassner repre-
sentation of Bn+2 is not faithful at Tx, ... ,Tn.
Corollary. Let Tx = •• • = T„ = T be a variable or a complex number subject to
(*). Set the Xj in the definition of the Wj(p) as usual.

(i) If Wj(p) is an effective obstruction to isotoping p by an isotopy fixing zq ,
not to intersect the ray Re(z) = j, Im(z) > 0, then the Burau representation of
B„ is faithful at T.

(ii) If Wj(p) is not an effective obstruction to isotopy, then the Burau repre-
sentation of B„+2 is not faithful at T.
Proof of the Theorem. If the Gassner matrix is the identity, then Wj(dpic) = 0
for j ±k . Look at the braid from the point (z0, r0) as in the introduction, in
such a way that it appears to have no crossings. Assuming the obstructions are
effective, any one arc can be isotoped into a straight arc z = k . Moreover, since
this extends to an ambient isotopy, we can again assume that there appear to be
no crossings. In general, the number of crossings in front of a straight strand z =
k in C x (-00, 0], when viewed from (z0, r), will remain constant or decrease
as r decreases. Since there are no visible crossings viewed from (zo, ro), upon
decreasing the first coordinate r0 of this point to a suitable negative number r\
to obtain the classical braid picture, we find that all crossings made by the A:th
strand are now overcrossings. Therefore the kth strand can be brought forward
and separated from the rest of the braid. One sees by induction that the braid
is trivial, and this proves the representation is faithful.

For the converse, assuming the Gassner representation of B„+2 is faithful
and p is an arc of the required type in C-{1,...,«}, one wants to prove
that each wk(dp) is an effective obstruction. Choose k, suppose Wk(dp) —
0 ? Of course, once there is a path p with these properties, there is also, in
C-{1, ... , n+2}, a path p , of the required type which instead does not pass so
far to the left as the integer 1, never crosses the ray Re(z) — k + 2, Im(z) > 0,
and does not terminate at k + 2, with Wk+l(dp) = 0. We will clearly be done
once we show any such path can be isotoped, fixing the basepoint, not to meet
the ray Re(z) = k+l, Im(z) >0 in C- {I, ... , n + 2) .

For such a path p, the proof will proceed by producing a braid with Gassner
matrix 1, such that the braid is trivial only if p can be isotoped off the vertical
ray at k + 1. The first step is to choose a fairly simple braid, one of whose
arcs projects to p. If p connects z0 to j, take the union of the vertical
lines z = 1,2, ... , (j - I), (j + I), ... , n + 2 together with the graph of p,
parametrized from -oo to 0 as p goes from zo to j. To make the dangling
ends agree with the lines z = 1,2,..., n + 2 for large negative r, move the
bottom end of the graph of p in front of the first j, to position 2, while moving
the second to the (j - 1 )st, trailing ends one unit to the right, as if the arcs were
hanging from a ceiling. Call the resulting braid a. The arcs Pi, ... , p„+2 now

2Note that by condition (b) this implies that p does not terminate at k .
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676 JOHN MOODY

have the property that p2 is isotopic to p, so wk+i(dp2) = wk+2(dp2) = 0.
For any s, let os denote the braid in which the 5th and (s + l)st strands

perform a half-twist in the counterclockwise direction as r tends from -co
to 0. The action of os on a general element of W is to first interchange all
occurrences of Xs and Xs+i in the coefficients, and to afterwards send the basis
vector es to es+i, es+\ to Ts+ies + (l-Ts)es+i. The formulas at the end of the
previous paragraph show that the action of o^+i on w(dp2) is trivial, except
that all occurrences of Xi and X2 in the coefficients are interchanged. It follows
that a~xok+la fixes e2 , and it clearly fixes ei. It is easy to see now that for
b — a~xok+xa and any even number s the commutator [bs, of] fixes ei and
e2. On the other hand, for k > 3, writing

b~*ek = c2e2 + --- + Cn+2en+2,       o\e2 = dxex+ d2e2,

we have, still for j even,

bsolb-sox-sek = bsa\b-sek = bs(c2(die{ + (d2 - l)e2) + b~sek)
= c2diei +c2(d2- l)e2 + ek.

If we raise b to any integer power, the action of the commutator will remain
in the one-parameter group parametrized by c2, and will be raised to a corre-
sponding complex power. In particular, and invoking our assumption that the
representation is faithful,

1 = [[bs, af], [b2s, of]]   for b = a-xok+ia.
Now, since both b and ax are conjugate to half-twists, yet sufficiently high
powers fail to generate a free group, they must commute by [11]. Now the
argument is geometric. I claim that the commutator [o{~x, b] is trivial only if p
can be isotoped off the upward-pointing ray at k +1 in C - {1, ... , n+2] . For,
in the usual braid diagram, the first strand crosses behind the (k + 2)nd only in
the second occurrence of a, of the four in the word ox~xa~xok+iaoia~xo^a.
The only way the first strand can be brought to the front is if the segment within
this occurrence of a can be brought in front of the segment of the (k + 2)nd
strand there. Viewing just the braid a from above, as in the notation section,
these segments appear as the arcs p and Ek+l, and the problem of isotoping the
two strands of the braid in an appropriate way so the one does not pass behind
the other is equivalent to the question of whether, in C-{l,...,« + 2}, p
can be isotoped away from the ray Re(z) = k + I, Im(z) > 0. Since we
have shown, using faithfulness, that the braid is trivial, it must then be possible
to isotop the simple arc p away from the vertical ray. This shows that the
Fourier series wk+x(dp) is an effective obstruction for this special type of arc
in C- {I,... , n + 2} , and that therefore wk(dp) is an effective obstruction
in C - {1, ... , n] as desired.
Remark 1. If one is not concerned with the precise range of faithfulness, it
is not necessary to assume that y is the boundary of an arc p; one can take
for y an arbitrary simple closed curve in C - {1, ... , n], as we have already
stated in the paragraph preceding the Theorem, provided the basepoint zo has
minimum real-coordinate value among the points of y . For, we can break y
at z0 , connecting one of the ends to n+l. Now, calling this path p, we have

wk(dp) = (1 - e2"a»^ )wk(y),        k = l,...,n,
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where the wk , calculated in C - {1, ... , n} or C-{l,...,n+l}, turn out to
be the same. Now if e2*iX*+' = 1, then all e2nUk = 1, as they are conjugate. In
this case wk(y) is not effective, and the representation is faithful for no value
of n . If e2nxXn+\ ^ I, the condition whether y can be isotoped off the upward-
pointing ray at k in C - {I, ... , n} , and the condition whether wk(y) — 0,
are equivalent to the analogous conditions for dp in C- {I, ... , n + 1} .

Remark 2. Similarly, if one is not concerned with the precise range of faithful-
ness, one can always assume that the path or circle in question does not cross
the downward-pointing ray Re(z) = k, Im(z) < 0.

3. The Burau representation
The condition that y should be a simple loop, without self-intersections,

plays an interesting role. In the Burau case, one can make a singular loop y
with w\(y) = 0 which cannot be isotoped off the upward-pointing ray at 1,
simply by drawing a figure eight (Figure 1).

If we break y in two places, as shown in Figure 2 on the next page, and
in this way resolve the crossing, connecting the free ends to the integers 1 and
k + 2, we will have

wM(d(y)) = (-l + T~x-l + T) + Tk~x(-l + T~x - T~2 + T~x),

where d(y) is the loop tracing the boundary of a small regular neighborhood
of the broken arc y.

We also allow an isotopy of the broken curve which brings the integers from
2 to k +1 into the triangular region, as shown in Figure 2. Note that for k = 2,
wk+3(d(y)) = 0. This is because two extra poles are needed to compensate for
the fact that pd(y) encloses two new integers, 1 and k + 2. The existence of
such a curve d(y) together with Remark 1 and part (ii) of the Theorem imply
that the Burau representation of B„ is unfaithful for

n = (k + 5) + l+2= 10.
The situation can be visualized as follows (see also the figures in the an-

nouncement [9]): Thinking of the dots at 1,2,3,4,6, and 7 = k + 5 as
projections of arcs perpendicular to the page, while an arc at k + 3 = 5 lies a

^^—^/      -— n"—*y—(—•-T—
V_^/ 1 2 Vx/

Figure 1
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X*3  *+1 \   | /
/ /fe+2~"N 1   \ /

I / -•—T-•-7—\-•-T-\        / k+3 \    k+4 J    U+5   /

Figure 2

bit below the page in the plane Re(z) = 5, and an additional arc loops about
in the plane, one sees arcs in three perpendicular planes. Moving the arc at
5 within its plane from a level below the page to a level above represents a
change of eight crossings. Although the entries of the Burau matrix concerning
the more complicated strand do detect the other strand cutting through, they
do so only for reasons of branch number, so those can be restored by moving
any other strand through the same crossings in the other direction.

Part (ii) of the Theorem is meant to express what is, in this situation, the
following construction: one makes a nontrivial braid by four applications of
such a move, changing 16 crossings each time, beginning with a trivial braid on
ten strands. Or, one changes a single crossing in a complicated way. One then
uses the assumption of faithfulness to establish that the braid lies in the kernel.

Such mysterious logic is unsatisfying, and it leaves open the question, first
raised by the referee, whether this braid does always lie in the kernel, rather
than some unspecified braid. This open problem, and the problem created by
the gap of two in the values of n between parts (i) and (ii) of the Theorem,
shall be brought to a satisfactory conclusion in the forthcoming paper of Long
and Paton.
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