
Relations between two singular foliations of a surface. J. Moody

Let V be an affine algebraic surface. Let’s look at how the pres-
ence of an isolated singularity in V affects the analytic structure
of a neighourhood of the singularity. Because this question is not
affected by normalization we may assume V is normal.

By resolving the singularity by a map X → V we analyze the ques-
tion in five parts. Here is a picture of the main phenomenon where
C is an exceptional component and E is a zero of a vector field.
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singularities of the foliation. But these determine

surrounding geometry and will affect tangency

with a second foliation.

Upon passing from vector field to foliation, 
the divisor E disappears leaving only isolated
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1. Let’s describe the singularities of an individual foliation F on
the variety X in terms of a divisor E associated to the foliation.
Since writing this I have seen it is all well known. The divisor is
obtained by choosing a derivation δ of the function field over the
constants, and taking the smallest divisor E such that δ(OV ) ⊂
OV (E).

(a) Let C be a smooth complete curve and C → X a nontrivial
map. Then

E·C =

{

F · C + Y − C 2, if F does not preserve C

F · C +KC , if F preserves C

where F ·C measures singularities of F on the curve C and
Y measures tangency of F on C.

(b) The negative −E is an effective divisor if and only if F has
a generating vector field which is well-defined everywhere,
not only a derivation of the rational function field.

In case E ·C = 0 these formulas resemble the familiar formulas
for the number of fixed points of a tangential or normal flow.
Note the right sides are usually positive for numerical reasons.

Proof: The intersection number is defined to be the degree of
the pullback of E to C.We start with a map ΩX → OX(E) with
torsion cokernel. Tensoring with OC gives exact sequence on
C defining the coherent sheaf F ·C on C. i∗ΩX → OC(CE) →
F · C → 0. The left term above is the the middle term in the
exact sequence 0 → OC(−C2) → i∗ΩX → ΩC → 0. We get
either a nonzero map OC(−C2) → OC(CE) with cokernel an
extension of F ·C by Y or else a nonzero map ΩC → OC(CE)
with cokernel F · C.
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2. Let’s next describe the singularities of an individual foliation
away from the singular point. Because we are working locally
we can and will ignore isolated singularities of our foliations.

(a) F gives rise, after contracting a compact divisor, to a folia-
tion nonsingular everywhere in a neighbourhood of a singu-
lar point of some variety V if the support of E is compact
and can be contracted.

(b) The foliation comes from an actual vector field not vanish-
ing in a neighbourhood of p if and only if the effectiveness
and contractibility of E can be arranged simultaneously.

(c) In the case when F preserves the curve C the number F ·C

calculates the singularities of the foliation which lie on C,
with multiplicities, in the usual sense. In the case when C

is not preserved the term F · C again counts singularities
of the foliation on the ambient variety which happen to
lie on C (with multiplicities). The extra divisor Y counts
tangencies.
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3. Next we need to describe the relations between a pair of folia-

tions, F1,F2 .

(a) Let K be a canonical class of X for any irreducible curve C
recall the adjunction formula K ·C = KC −C 2. If deriva-
tions of the function field are chosen representing each fo-
liation, then K is not only a divisor class but an actual
divisor and E1+E2−K is an effective divisor. The gener-
ating derivations are actual vector fields if and only if the
coefficients of E1, E2 are ≤ 0. This forces the coefficients
of K to be ≤ 0.

(b) The foliations F1,F2 can be made to correspond to a pair
of transverse nonsingular foliations in a neighbourhood of a
singular point p if the union E1∪E2∪K is contractible to a
point. From earlier, therefore, there is a pair of transverse
vector fields in a neighbourhood of the point if and only if
in addition −E1 and −E2 can be chosen effective. Then
note that −E1,−E2, and E1 + E2 −K are three effective
divisors adding up to the effective divisor −K.

(c) For any irreducible curve C

(E1 + E2 −K) · C =

F1 ·C+F2 ·C+ǫ1Y1+ǫ2Y2+(1−ǫ1−ǫ2)KC+(1−ǫ1−ǫ2)C
2

where

ǫi =

{

1, C not preserved by Fi

0, C preserved by Fi

Proof. For (a) note E1 +E2 −K = K − (K −E1)− (K −E2)
and

the terms in parentheses are the divisors associated to the ker-
nels (invertible for projective dimension reasons) of the maps
ΩX → OX(Ei) for i = 1, 2. The divisor compares the sec-
ond exterior power of ΩX mod torsion with the tensor product
of the two line bundles containing it. For (b) just note that
E1 ∪ E2 ∪ (E1 +E2 −K) is the same as the given support set.
Part (c) just follows by plugging into the formula from 1(a) for
Ei · C and using the adjunction formula.
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4. Two Examples In this section we’ll look at two examples.
Each example admits a pair of singular foliations and we will
find in each case they both preserve a rational curve in com-
mon. To construct an example with two transverse foliations
everywhere it would be necessary to complete these to projec-
tive lines and make all the numerology we have described above
consistent so these extra curves can be contracted.

(a) Example. Blow up a nonsingular point in the (x, y) plane
to a rational curve C with self-intersection -1. The vector
field x ∂

∂x
+ y ∂

∂y
in the plane generates our first foliation F1

on the resolution which has no singular points anywhere
and is transverse to C. The divisor E1 associated to our
generator is −C itself as one calculates locally by applying
the derivation to the coordinate functions.

E1 = −C

and the formula for E1 · C in the non-preserving case 1(a)
tells us that

−C 2 = F · C + Y − C 2.

This confirms that the positive divisors Y and F · C are
both zero.

Now we take a second vector field in the plane, this time
use y ∂

∂x
− x ∂

∂y
. Now the new foliation F2 on the resolution

preserves the curve C. It has divisor zero as the vector
field lifts to a vector field which is only zero at two points
p1, p2 ∈ C. Thus E2 = 0 and this time the formula 1(a)
tells us

0 = F2 · C +KC

This tells us that the two points of C where F2 is singular
come from the negative of the canonical class of C. Note
this is the smallest amount of singular locus that is possi-
ble.

Now we consider how these foliations are related. Strictly
speaking now we should start working in a larger projective
variety containing our resolution. There we have that

E1 + E2 −K
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is effective. To build K we apply our two vector fields to
coordinates in the resolution and take a determinant and
this gives K = −C − L1 − L2 where L1 + L2 are two lines
which are the strict transform of x = ±iy. So our effective
divisor E1 + E2 −K is just

L1 + L2.

Thus the divisor L1 + L2 is the divisor of tangency of F1

and F2. We could now extend this picture, by viewing the
Li as projective lines in a larger surface and try to use the
formulas above to obtain a contractible divisor consisting
of two rational curves touching at one point. As we have
shown, one of the necessary numerical conditions is that
both foliations must simultaneously preserve one of the
curves and this does happen here.

(b) Example. This time instead blowing up a point in the
plane, let us blow up the cone point in the cone on an
ellipic curve. So we are considering the cone given by the
equation

y2z = x(x− z)(x− 2z).

We consider this affine surface and blow up the origin. This
time the exceptional curve C has genus 1 and C 2 = −3.
For our first foliation we’ll take that generated by

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

We get E1 = −C. Our equation tells us

−C 2 = F1 · C + Y − C 2

and there are no singularities anywhere.

For the second vector field we use

2yz2
∂

∂x
+ z(3x2 − 6xz + 2z2)

∂

∂y

which lifts to the resolution (because of the extra factor of
z) . We have E2 = −2C−L now where L is the strict trans-
form of the line z = 0. This is a case when the component
is preserved. Thus

(−2C − L)C = F2 · C +KC
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and since the left side has degree five this tells us the foli-
ation has a total of five singular or tangential points some-
where on the elliptic curve. Taking as our canonical divisor
−C we find that our effective tangency locus, where the two
foliations are tangent to each other, must be some divisor
linearly equivalent to

E1 + E2 −K = −2C − L.

This will be five lines meeting C at the five singular points
of the second foliation.

Because the first foliation preserves these five lines so must
the second, and again we are in a situation where there are
lines preserved by both foliations.

5. Remarks about Tangency. Here are some remarks concerning
numerical ways of calculating the divisor E1+E2−K (without
choosing generating vector fields of the foliations).

(a) The curves C in the support of the effective divisor E1 +
E2 −K are precisely the curves along which the foliations
are tangent to each other. For such a curve ǫ1 = ǫ2 because
being tangent to each other they must both either preserve
or not preserve C.

(b) Conversely, if both foliations preserve C then C belongs
to the support of E1 + E2 − K. If both foliations do not
preserve C then C may or may not belong. If F1 · C =
F2 ·C = Y1 = Y2 = 0 then choosing generating derivations
of the function field, a scalar linear combination of these
must preserve C, because the lowest-degree terms of both
foliations are represented by an element of the same one-
dimensional space of global sections in that case (see next
paragraph). Therefore, still in the non-preserving case, if
one wants a condition which is actually equivalent to saying
C belongs to the support of E1 +E2 −K it is this: choose
a rational function linear combination of the generating
vector fields of the two foliations which preserves C and
check if it is identically zero on C.

(c) The class which determines whether a foliation F preserves
C is an element of H0(EC + C 2) and is easily calculated
once a divisor E of F is known.
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