
Functorial affinization of Nash’s manifold

Abstract. Let M be a singular irreducible complex manifold of dimension n. There

are Q divisors D[−1], D[0], D[1], ..., D[n + 1] on Nash’s manifold U → M such that

D[n + 1] is relatively ample on bounded sets, D[n] is relatively eventually basepoint

free on bounded sets, and D[−1] is canonical with the same relative plurigenera as

a resolution of M. The divisor D = D[n] is the supremum of divisors 1
i
Di. An arc

containing one singular point of M lifts to U if and only if the generating number

of ⊕iOγ(Di) is finite. When finite it equals 1 + (KU − K) · γ where OU (K) is the

pullback mod torsion of ΛnΩM . If C is a complete curve in U then −1
n+1

KU ·C = D1 ·

C+Dn+2 ·C+D(n+2)2 ·C+..... When there are infinitely many nonzero terms the sum

should be taken formally or p-adically for a prime divisor p of n+2. There are finitely

many nonzero terms if and only if C · D = 0. The natural holomorphic map U →

M factorizes through the contracting map U → Y0. The Grauert-Riemenschneider

sheaf of M, if M is bounded, agrees with Hom(OM (D(n+2)i−1), OM (D(n+2)i)) for

large i. If M is projective, singular s-dimensional foliations on M such that K +(s+
1)H is a finitely-generated divisor of Iitaka dimension one are completely resolvable,

where K is the canonical divisor of the foliation.

According to a question of [7] it is not known whether Y0 always has canonical

singularities. It is not known whether the analogue of Nash transforms, locally

principalizing the reflexivication of ΛnΩM , eventually converges, but this is true for

toric surfaces. Conjecturally a split faithful action of a commutative Lie algebra

can never be completely resolved if the weights do not form a basis (possibly with

multiplicity) of the dual of the Lie algebra. This is not known. It is not understood

under what conditions Y0 can be connected to the relative canonical model by proper

maps over M.

John Atwell Moody

Coventry

April 12, 2010

i



0. Preliminaries

0.1 Hypotheses. Throughout this article, M will be a singular
complex manifold; that is, a Hausdorff space with a countable
open cover by closed analytic subspaces of complex domains,
furnished with the reduced structure sheaf. We suppose that
M is irreducible and let n = dim(M). An open subset of M will
be called bounded if its closure is compact.

0.2 The Nash manifold. Let ...M2 → M1 → M0 = M be the
sequence of Nash blowups of M [4] and let U0 ⊂ U1 ⊂ U2 ⊂ ...
be the ascending chain of open immersions, where Ui is the
regular locus of Mi. Let U be the colimit, so U is the ascending
union of the Ui; every point of U is contained in one of the Ui

and the Ui are complex manifolds; and so U is also a complex
manifold. It is, and is here also defined to be, Nash’s manifold.
It is not known whether the structural map U → M is always
proper, and this is a question raised by Nash’s work.

0.3 Canonical Singularities. For each natural number r let
Vr → M be the universal singular manifold such that the push-
forward of ω⊗r from a resolution of Vr is invertible and rela-
tively basepoint free over M. The Vi have inclusions according
to divisibility

V2

ր ց
V1 V6

ց ր
V3

etc. Set V to be the colimit of the Vi. The maps Vi → V are
open immersions providing an open cover. Since each Vi has
canonical singularities, V itself is a manifold with canonical
singularities. That is to say, if s : V ′ → V is a resolution then
every point of V has an index r and a Stein neighbourhood
T such that the Γ(s−1T, ω⊗r) is a principal Γ(T,OV ) module.
As in the case of the Nash manifold, there is a natural map
V → M, conjectured to be a proper map [7], now known when
the singularities of M are isolated, and much more generally
([13,21,22,23] further discussion in the appendix).
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0.4 Constructions of Grothendieck and Atiyah

Let now F be any coherent analytic sheaf on M, we assume
F is torsion-free and of rank one. Let f : V(F) → M be
Grothendieck’s map of singular manifolds [2], definition 1.7.8,
with analytic action of Gl1(C) freely and transitively on the
fibers with fixed locus M itself, which is characterised by the
property that for i ∈ Z, the coherent sheaf of complex val-
ued holomorphic functions on F which transform according to
the character of degree i are just 0 if i < 0 and the power
F⊗i/torsion otherwise. If F is invertible, then V(F) can be
identified point-by-point with the dual of the line bundle whose
section sheaf is F . In general, [2] paragraph 1.7.9, the section
sheaf of V(F) is Hom(F ,OM). The subsheaf of f∗ΩV(F)/torsion
which transform according to the character of degree one is
called the principal parts sheaf of F modulo torsion and will be
denoted P(F), and the exact sequence 0 → F ⊗ ΩM/torsion →
P(F) → F → 0 is Atiyah’s sequence [1]. There is a natural
splitting i of Atiyah’s sequence as a sheaf of complex vector-
spaces, and the sheaf of OM -module splittings assigns to an
open set T ⊂ M precisely the i + ∇ where ∇ : F|T → P(F|T )
runs over the distinct connections on the restriction of F to T.
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1. The ordering on coherent sheaves

1. Theorem (see [17]) If F and G are two such coherent sheaves
then there is a natural transformation

Gn+1Λn+1P(F) → Λn+1P(GF) (1)

such that for each F and G, the map pulls back on BlFG(M) to
the natural map (where τ : BlGFM → BlFM over M )

τ ∗ΛnΩBlFM/torsion → ΛnΩBlFGM/torsion

twisted by the n+1 power of the invertible sheaf which results
by pulling back FG and reducing mod torsion. The map is not
an n + 1 exterior power. It generalizes the special case when
BlFM is normal.

2. Corollary. Suppose BlFM is normal. Then, on each bounded
open subset of M, G is a divisor of a power of F as sheaves of
fractional ideals if and only if (1)/torsion becomes surjective af-
ter multiplying by a power of FG.

Among multiplicatively closed ‘sets’ of torsion-free coherent sheaves
on M closed under division and multiplication, those which
happen to be finitely generated on bounded open sets of M , are
generated by a single element on each bounded open set. Such
multiplicatively closed sets of sheaves correspond bi-uniquely
with singular manifolds N → M over M whose structure map
is locally projective of degree one. The corollary for example
can be interpreted as saying that on bounded open sets the
map (1) is an isomorphism after multiplying by some power of
FG if and only if G is already contained in the smallest multi-
plicatively and divisbilitively closed set containing F .

Stein factorization implies that finitely generated multiplica-
tively and divisibilitively closed sets of torsion free coherent
sheaves of rank one have the descending chain property on
bounded open subsets of M. The unique minimal set for exam-
ple is the set of invertible sheaves. The corresponding chain
condition can be included in the conclusion of the theorem.

3



2. A basepoint free theorem

Let f : N → M be a locally projective morphism of degree
one. Generalizing from the case of invertible sheaves, we say
a torsion-free coherent sheaf of rank one F on N is spanned
relative to f if each point p of M has a neighbourhood such that
the restriction of F to the inverse image of the neighourhood is
generated by global sections; and we say that F is very ample
relative to f if all F⊗i/torsion are spanned relative to f and
the meromorphic map N− → Proj ⊕i (f∗F)i is the inverse of a
morphism.

3. Corollary. Let L now be an invertible sheaf on N which
is very ample relative to f. Then Ln+1ΛnΩN/torsion is spanned
relative to f and Ln+2ΛnΩN/torsion is very ample relative to f.

The inverse morphism is the Nash blowup, which makes its
appearance in this way.

The primary difference between Miles’ model of [7] and the
Nash model is that Miles’ model has a functorial and canonical
affinization. This difference disappears upon contemplation of
the formula for the partial sum of a geometric series

(n + 2)s = (n + 1)(1 + (n + 2) + ... + (n + 2)s−1).

Namely, starting from a torsion-free coherent sheaf F on M,
we define for each natural number i a new torsion free co-
herent sheaf, functorial with respect to Grothendiecks’ cate-
gory of holomorphic maps of M and coherent sheaf maps of
F , by the rule that if the base-(n + 2)-expansion of i is a0 +
a1(n + 2) + ... + as(n + 2)s with 0 ≤ ai < (n + 2), then we write
Fi = F⊗a0

1 ⊗ ...⊗F⊗as

(n+2)s/torsion and when i = (n+2)j is a power

of n + 2 we write Fi = Λn+1P(F ⊗F i−1
n+1

)/torsion. The morphism

of theorem 1. provides the needed ‘carrying’ map

F
⊗(n+2)

(n+2)j → F(n+2)j+1

such that the Fi can be multiplied following the usual manner
in integer expressions to the base n + 2 are added together.

4. Theorem. If F is a very ample invertible sheaf on M then
the Fi are torsion free coherent sheaves on M which are gener-
ated by global sections.
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3. The next-to last stage of Nash’s tower

5. Theorem. Suppose the Nash tower ...Mm+1 → Mm → ... →
M0 = M satisfies Mm+1 = Mm. Then U = Mm, ⊕iFi is finite
type (although the local generating degree can be larger than
(n + 2)m and might not be bounded) and taking Y = Proj ⊕ Fi

there is a pullback diagram

Mm → Mm−1

↓ ↓
Y → M

.

In other words, U = Mm can always be built by pulling back the
penultimate term of the Nash tower Mm−1 → M along Y → M.
In general, by section 6, properness of U → Y is equivalent to
⊕Fi being (locally) of finite type.

Proof. F(n+2)m−1 = F(n+2)m−1−1⊗Fn+1
(n+2)m−1/torsion while Mm, Mm−1, Y

are the blowups of M along the three sheaves in the equation.

4. Properness of U → Y0

If it is not known whether U → Y is proper, instead let f :
Y0 → M be the universal singular manifold over M such that
at every point p ∈ Y0 there is an index r such that f ∗Fi/torsion
is principal in a neighbourhood of p when r|i.

6. Corollary. The map U → Y0 is always proper. Therefore
U → M is proper if and only if Y0 → M is proper.

Proof. The equation above shows that the local isomorphism
type of the pullback modulo torsion of F(n+2)m−1 stabilizes as m
increases. This does immediately imply the corollary without
further work, but a less mysterious proof is by considering arc
lifting as we shall do in section 8.
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5. The description of U as a graph

7. Theorem. Suppose M is projective with very ample F and
that Y0 → M is proper. Let W = Proj ⊕i Γ(Fi). Then W is an
algebraic variety and Y0 → M is not only a proper map, it is
actualy the universal solution of resolving the indeterminacies
of the rational map M− → W, ie it is the closure of the ‘graph’
of the rational map M− → W.

The following is an immediate consequence of theorems 5. and
7.

8. Corollary. The map M− → W is a morphism if and only if
M is nonsingular.

9. Remark. Assume that M is a singular projective variety.
Then the singular manifold W consists of a single point if and
only if M is a linear projective space and H is a hyperplane.

This shows that dim(W ) need not always be as large as n. It
is of course bounded above by the Iitaka dimension of K +
(n + 1)H. We have to be careful if we want to work by in-
duction on Iitaka dimenson as for any Gorenstein variety be-
sides projective space which has isolated irrational singulari-
ties, K +(n+1)H is very ample (see [16] theorem 8.8.5). Begin-
ning in section 7 we’ll consider the consequences of forcing the
calculation when n is intentionally chosen to be different than
the dimension of M.
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6. The terms of degree
(n+2)i−1

n+1
.

The terms Fi where i is a partial sum of a geometric series to
the base of n+2 play a particular role, as if I replace F by such
an Fi then the auxiliary singular manifold Y0 is unaffected, and
the effect on the sequence F0,F1, ... is to ‘truncate’ by passing
to the subsequence of multiples of a power (n + 2)j.

Properness of Y0 → M is equivalent ⊕Fi, being (=locally) of
finite type. That is to say, on each bounded open subset of M

F
⊗(n+2)

(n+2)i → F(n+2)i+2 is a surjective map of rank one coherent

sheaves for large i. Once this happens for one value of i then it
happens for all sufficiently large values of i. Surjectivity of the
map from the n + 2 symmetric power of the terms of degree 1
to terms of degree n + 2 is neither necessary nor sufficient for
nonsingularity of BlF(M), but it follows nevertheless therefore
from Hironaka’s theorem [3] and [20] Theorem 3.45 (see also
crucial references therein) that on a bounded open set once F
is replaced by such an Fi that there is always a choice of F
such that ⊕iFi has generators of degree one. Conversely when
F1 generates, then F ⊗ F1/torsion is a resolving sheaf.

7



7. Filtration of the homogeneous coordinate ring of V

The results above provide a functorial relative affinization of
Nash’s manifold which is analogous to the intrinsic relative
affinization of V. This is not precisely automatic, for example no
functorial affinization of Hironaka’s and Spivakovsky’s model
[14] is known.

If n is taken to be 1 + dim(M) in the definition of the multi-
plication (but not in the exterior degrees) then a series of sub-
sheaves of the Fi arises. It is confusing to say ‘let us no longer
assume that n is equal to the dimension of M ’ and so let’s in-
stead continue to let n = dim(M) and use a contrivance: for
each integer N ≥ −1, whenever j is a power j = (N + 2)i let

Xj[N ] = F⊗(n+1)
(N+2)i−(n+2)i

N−n ⊗F(n+2)i−1⊗F⊗N+2
(n+2)i−2⊗F

⊗(N+2)2

(n+2)i−3 ⊗...⊗F
⊗(N+2)i−1

1 /torsion

depending on N, n and j. The exponent of F is positive regard-
less of the relative magnitude of N and n. If j is not a power
of (N + 2) then define Xj to be a product according to the base
N + 2 expansion of j, and let

Fj[N ] = limsHom(Xj[N ]n+s, Xj[N ]N+s ⊗Fk/torsion)

where k results by replacing N by n in the base N +2 expansion
of j. (When N = −1 and base N + 2 expansions are ambiguous
also take the colimit over expansions). Taking N = n we have

Fj ⊂ Fj[n]

an integral map. For N taking values besides n then the Fj are
nested

Fj[n + 1] ⊂ Fj[n] ⊂ ... ⊂ Fj[−1]

and it is also easy to see that for each fixed n the ⊕jFj[N ] form
a graded ring sheaf. We will also abbreviate ⊕iFi[N ] by the
symbol F [N ].

10. Theorem. As N passes along the sequence −1, 0, 1, 2, ..., n+
1 the F [N ] describe then a filtration of the sheaf of homoge-
neous coordinate rings of V.

Proof. By 14 d) Fj[−1] ⊂ τ∗OU(jKU).
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For each N let f : Y0[N ] → M be the universal singular mani-
fold such that each point p has an index r such that f ∗Fi[N ] is
principal in a neighbourhood of p for all r|i. The resulting Y0[N ]
is independent of the choice of F if F is invertible, and let us
take F = OM . It will follow from Theorem 14

11. Theorem.

a) When N = −1, the integral closure of F [N ] is the homoge-
neous coordinate ring of V, and so the Y0[−1]− → V is the
inverse of a finite (=proper locally affine) morphism.

b) When N = n, Y0[N ] admits a finite map to Y0 over M.

c) When N ≥ n + 1, Y0[N ] is isomorphic to U .

d) For values of N between −1 and n + 1 there are meromor-
phic maps whose inverses are carried by morphisms of the
affinizations.

e) The first map Y0[n+1]− → Y0[n] is proper and holomorphic.

U = Y0[n + 1]− → Y0[n]− → ...− → Y0[−1]− → V

ց ↓
M

It holds from [13,21,22,23] that the map V → M is a proper
morphism if M is locally algebraic (this is full generality if the
singularities of M are isolated [5]). The diagonal vertical ar-
row and the vertical arrow are the two models U and V. The
existence of a chain of proper maps in either direction between
U and V over M is not a new open question. Unless both were
false, it is equivalent to the logical equivalence between the
questions considered separately of the properness of U over M
and the properness of V over M.
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8. Nash Arcs

Pulling back ⊕jFj modulo torsion along an analytic arc t 7→
γ(t) ∈ M which is defined on a domain of times T ⊂ C gives
a graded ring of coherent sheaves on a domain in the complex
number line. Suppose that the arc contains a regular point.
Then the sheaf is finitely generated except at a discrete set of
times t, so there is no harm assuming that γ(t) is a regular
(smooth) point except when t = 0. The restriction of γ∗F−n−2

(n+2)i ·

γ∗F(n+2)i+1 to the open set T \ {0} is canonically isomorphic to
OT\{0} and contains a canonical copy to OT . On T there is a
thereby distinguished natural isomorphism of the torsion free
part to t−diOT for a natural number di depending on i. Thus we
obtain a sequence of natural numbers d1, d2, ...

12. Theorem.1 The sum
∑∞

i=1 di is finite if and only if γ
lifts to U , and it is then equal to the local intersection product
(KU −K) ·γ where K is a Cartier divisor such that OU(K) is the
pullback mod torsion of ΛnΩM . In other words, passing to the
local analytic ring C{{t}} at the origin, the minimum number
of generators gen(γ) of the local algebra γ∗(⊕iFi){0} over C{{t}}
is given by the equation

gen(γ) = (KU − K) · γ + 1

Proof. The integral extension from section 10 ⊕iFi ⊂ ⊕iO(Di)
pulls back modulo torsion to an isomorphism. Then d0 = 1 and
di = γ · (D(n+2)i − (n + 2)D(n+2)i−1) for i ≥ 1. By the definition of
the Dj this equals γ · (Ki − Ki−1). Adding over i = 1, 2, ... yields
a collapsing sum adding to γ · (KU − K).

For example if C crosses KU −K transversely at one point then
γ∗⊕Fi is isomorphic to a graded sheaf of algebras generated by
t in degree 1 and t(n+2)s−1 in degree (n+2)s where s is, I believe,
the number of Nash blowups needed to make the intersection
transverse. The intersection number is then the local winding
number of T \ {0} about one of the components of KU − K.

1It will be proved in a later paper that the sum of the di is always finite and so all arcs lift
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9. Examples and discussion.

This section will have no theorems, but is included for context.
In the case when F is very ample the F [N ] are generated by
global sections as long as N ≥ n. The square brackets instead
of round brackets around N are to avoid confusion with the
notation of level in modular forms. For example if M is a mod-
ular Riemann surface of level G ⊂ PSl2(Z) a torsion free group,
and F is the section sheaf of a line bundle, including one global
section which crosses each cusp transversely, then in the inclu-
sions of four graded rings

ΓF [2] ⊂ ΓF [1] ⊂ ΓF [0] ⊂ ΓF [−1]

all four rings are the same; they are all equal to the ring of
modular forms of even weight and level G. The composite of
the four equalities induces the composite of the Nash resolu-
tion with the inverse of the relative canonical morphism. An
example where N matters is the case of something higher-
dimensional such as the example of Kollar and Ishii [18], the
solution set M of the equation x3

1+...+x3
4+x6

5 = 0, and let us here
repeat the beginning part of their discussion. Here V → M is
an isomorphism because M already has canonical singulari-
ties. These can be resolved by blowing up reduced points. First
blowing up the singular point yields as exceptional component
the projectivized tangent cone at the origin, a cone on a cubic
hypersurface in P3, which is ruled. Nevertheless it must occur
in any resolution because of Nash’s argument [15] about irre-
ducible components in the space of arcs. The blow-up in turn
of the cone point of the projective subvariety provides a resolu-
tion V ′ → V with a second component, a full cubic hypersurface
in P4 which is not an arc component because first infinitesimal
neighbourhoods of lines split; but is now essential because it is
non-generically ruled. Thus the paper produces two essential
components which live ‘above’ the smallest canonical singulari-
ties model V but for different reasons. Also [18] says that even
if we did not now that the first component were an arc com-
ponent, and even though it is not one of the essential crepant
components of [7], its essentialness also follows because of hav-
ing minimal discrepancy.

11



In this case Λ4ΩV /torsion = 1
x5
5
Idx1dx2dx3dx4 has invertible re-

flexivication 1
x5
5
OV dx1dx2dx3dx4 where I = (x2

1, x
2
2, ..., x

5
5). The

section 1
x5
5
dx1...dx4 of the canonical line bundle of the resolu-

tion a has a simple zero at the first exceptional component and
a double zero at the second one. Taking F to be the unit ideal,
each Fi contains I i 1

x5i
5

(dx1...dx4)
i and is of the form Ii

1
x5i
5

(dx1...dx4)
i

for Ii a suitable adjunction ideal. Defining the sequence g1, ..., g5 =
x2

1, ..., x
5
5, then F1 = I 1

x5
5
dx1...dx4 is ordinary 4− forms, and F6

contains F6
1 but is slightly larger; it is spanned over OV by the

alternating forms

g0dg1dg2dg3dg4 − g1dg0dg2dg3dg4 + g2dg0dg1dg3dg4

−g3dg0dg1dg2dg4 + g4dg0dg1dg2dg3

for g ∈ FF1 = F1. In other words symmetric linear six-forms
in alternating differential four-forms are a special case of an
alternating sum of products of differential four-forms against
four-forms in four-forms. Amusingly, the expression above can
be rewritten as g5

0d(g1/g0)...d(g4/g0) showing that this expres-
sion is then antisymmetric in the gi. This same expression which
describes a typical n-form on a coordinate chart with an extra
zero of degree n + 1 on the exceptional locus describes also a
typical element in the image of the universal connection. Let
us explain this and also something more general.

13. Observation The expression gn+1
0 d(g1/g0)...d(gn/g0) is an-

tisymmetric under permutations of g0, ..., gn and results from
applying the universal C-linear connection ∇ to dg0...dgn using
Leibniz rule. Therefore F6 is generated by the image of ∇ if
g0, ..., g4 run over sections of the product sheaf FF1.

Just generally, if G is torsion-free coherent of rank s then

0
H
→ Λs(n+1)PG⊗Sj(G)/torsion

H
→ Λs(n+1)−1PG⊗Sj+1(G)/torsion

H
→ ...

an exact complex for j ∈ N.
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The sheaf P(G) is the kernel of q : ΩV (G) → ΩM , (that is, one-
forms which are zero on M ) pulled back as a coherent sheaf
along the inclusion i : M ⊂ V (G) of the zero section, to arrive
at i∗Kernel(q)/torsion. If y is a section of G viewed as a linear
function on the fibers of f, it is already in Kernel(q), and for x
a local holomorphic function on M, the connection ∇ is merely
the deRham extending the deRham differential d on M and
satisfying ∇(xy) = x∇(y) + ydx.

Now pulling back P(G) further along f : V (F) → M gives
f ∗P(G), and H and ∇ extend by Leibniz rule. H is a contracting
homotopy; the formulas

H ◦ ∇ + ∇ ◦ H = (s(n + 1) − j)

H ◦ H = 0

∇ ◦∇ = 0.

H commutes with x and sends dy 7→ y 7→ 0.

The result f ∗P(G)/torsion is the direct sum of the sequences
shown above plus a finite number of incomplete parts of se-
quences exact except possibly at the leftmost term, which is
Λi(G ⊗OM

ΩM) when i is small enough that this is nonzero. The
Atiyah sequence H : Λ1P(G) → S1G → 0 with its C-linear
splitting ∇ : G → P(G) is one of those incomplete parts, the
one for i = 1, although the information there determines the
other sequences. The Atiyah sequence itself does not trans-
form well since the kernel term Ω ⊗ G/torsion is nonvanishing
on the zero section M. The notion of Atiyah is that although
this sequence is exact, still K-theoretic information can be ex-
tracted as Whitehead torsion. The same should be true of the
exact sequences which transform better too. That is, the ex-
act sequences of sheaves whose sections vanish on the zero
section M are not affected by various modification of the zero
section such as intermediate blowups between M and BlG(M).
Though algebraic cycles representing the Whitehead torsion
might change dimension reminiscent of dimension changes in
arc components.
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Esnault, Viehweg and Verdier show in [12], Appendix B, how
to extract higher Chern classes using Deligne’s concept of con-
nections with logarithmic poles; and they mention that the as-
sumption of a normal crossing divisor of multiplicity one is not
needed. In place of the composite Γαi

i there, one could try look-
ing for algebraic cycles in the higher exterior power complexes
here rather than only iterating the morphism. Here, where
G has rank one, this is just the fact that ∇ ◦ H is multiplica-
tion by n + 1 on Λn+1PG. It means that H is an embedding of
Λn+1PG/torsion in ΛnP(G)⊗G/torsion, and in fact the exact se-
quence going further to the right (with differential H) is exactly
like the sequence used in the theory of Castelnuovo-Mumford
regularity; it is a torsion-free and exact Koszul complex twisted
by tensor powers of G, and it is exact even though G is an arbi-
trary torsion free coherent sheaf of rank one. Generically the
image is equal to the rank one subsheaf Λn(ΩG) ⊗ G/torsion =
(ΛnΩ) ⊗ Gn+1/torsion; in fact it is a bit larger. The inclusion
composed with the inverse of the isomorphism of H onto its
image is precisely the map of theorem 1 for the case F = OM .

We see from the observation that if we coordinatize the blowup
of (g0, ..., gn+1) we are adjoining an n form with extra poles of
degree n + 1 on the exceptional locus. Without blowing up the
ideal, the presence of the additional generators means that we
are enlarging the adjunction ideal by an inclusion I6 ⊂ I6 with-
out affecting the codimension one primary components (there
are none); elements of F6 are not six-fold symmetric powers of
one-forms anymore, they can be viewed as having additional
poles on V at primary ideals whose associated prime is the
maximal ideal of the cone point.

If π : V ′ → V is a resolution the sheaf ⊕jπ∗(ω
⊗j
V ′ ) is just ⊕jω

⊗j
V ,

and any isomorphism ωV → OV gives an isomomrphism be-
tween this and (the sheafification of) the polynomial algebra
OV [T ]. The F [N ] describe a filtration of the graded algebra and
we have noticed that F6[4] is like six-fold symmetric powers of
alternating differential 4-forms with extra poles of codimen-
sion four, it is just an integral extension of the un-adorned F6;
while there must exist a number r such that the integral clo-
sure of Fj[−1] is all of (F⊗j

1 )∗∗ = ω⊗j
V when r|j.
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10. Divisorial approximation

Let us say that an inclusion F → G of torsion-free coherent
sheaves of rank one is integral if for each Stein open set U
there is some ideal sheaf Y so that Γ(U,YF) = Γ(U,YG).

The construction of the relative canonical model by taking di-
rect images suggests an analagous construction, and up to in-
tegral morphisms this is possible.

Let Ki be the Cartier divisor on U which is the pullback modulo
torsion of ΛnΩMi

. Fix a natural number N ≥ −1. Let τ : U → M
be the structural map. Define Cartier divisors D1, D2, ... on U
to be the integer linear combinations of the Ki given by the
equation

D(N+2)j = Kj+(N+1)(Kj−1+(N+2)Kj−2+(N+2)2Kj−3+...+(N+2)j−1K0)

and when i = a0+a1(N +2)+ ...+as(N +2)s with 0 ≤ ai < (N +2)
let

Di = a0D1 + a1D(N+2) + ... + asD(N+2)s.

If there is any ambiguity about the choice of N we will write
Di[N ] to denote the relevant number N which was used in con-
structing D.

15



14. Theorem. Let F = OM .

a) For each N and j There is a natural map of torsion-free
coherent sheaves of rank one

Fj(N) → τ∗OU(Dj[N ]).

It is an integral map for all N and j. Therefore F [N ] ⊂
⊕iτ∗OU(Di[N ]) is an integral map of OM -algebra sheaves
and, more strongly, of underlying coherent sheaves.

b) For each N and each sequence of numbers increasing with
divisibility i1|i2|i3|... the sequence of Q− divisors on U is an
ascending sequence

1

i1
Di1 [N ] ≤

1

i2
Di2 [N ] ≤

1

i3
Di3 [N ], ....

and on any bounded subset of Y0[N ] it is a finite ascending
series of Q-divisors. Therefore for each N there is a limit-
ing Q-divisor D[N ] on U such that at each point of U there
is an index r such that Di[N ] = i · D[N ] whenever r|i.

c) For N = −1 the divisor D[N ] is merely the canonical divi-
sor KU of U. That is, D[−1] = KU .

d) Let π : M ′ → M be any resolution. For each i the pushfor-
ward τ∗OU(iKU) is the same as π∗OM(iKM). We can there-
fore use U in place of M ′ and D[−1] in place of KM ′ in defin-
ing the homogeneous coordinate ring sheaf of V.

e) Recall Di = Di[n]. The fibers of U → Y0 are (complete)
projective varieties. Let C be a complete curve in U. Then
C is contained in just one fiber of U → Y0 if and only if the
right side of the equation

KU · C = −(n + 1) ·
∞

∑

i=0

D(n+2)i · C

has only finitely many nonzero terms. When C is not con-
tained in a fiber the right side is eventually a geometric
series. In every case the equation remains valid formally;
i.e. as the sum of a convergent series of p-adic numbers for
any prime divisor p of n + 2.
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15. Corollary. The ‘discrepancy’ KU · C − K · C is the sum
over points p ∈ C of the genp(C)− 1 where genp is the local gen-
erating number at p. This differs from the actual discrepancy
by (τ ∗KM − K) · C. I think that the sum is the dimension of
the vector space (i∗F/torsion) ⊗F OM if i : C → U is the map.
If γ does not lift, the cardinal dimension of the vector space
does not carry full information; the Grothendieck class of the
module must be represented by a Poincare series or a p-adic
number in that case.

Proof of d). Assume M is contained in a disk. Choose a global
section of the i’th power of the canonical sheaf of the resolution
M ′. Choose a point of U, and choose a stage of the Nash tower
Mm → M which contains a neighbourhood T of this point. The
form on the regular locus of M ′ pulls back to a form on a res-
olution of the pullback of M ′ and Mm over M and forward by
an isomorphism between an open set and the complement of
a codimension two subset of T, and then extends across all of
T. For the converse use Hilbert’s basis theorem for subsheaves
of of (ΛnΩ⊗i

M )∗∗. Replacing M by a bounded open subset if nec-
essary, there is a number m so τ∗OU(iKU) = τ∗OU(iKm). In the
case Mm+1 is normal, since OU(iKm) agrees on the regular locus
of Mm+1 with the pullback modulo torsion of ΛnΩ⊗i

Mm
, we have

a section of a locally free sheaf, which then extends across the
codimension-at-least-two singular locus of Mm+1. The extended
section belongs to the larger sheaf ΛnΩ⊗i

Mm+1
/torsion and does

pull back to a section of ωi on a resolution. If Mm+1 is not nor-
mal, boundedness of Mm+1 in the larger manifold implies that
there is an upper bound on the number of initial consecutive fi-
nite and nontrivial Nash blowups of any open subset of Mm+1.
A higher Nash blowup MN → Mm+1 yields, by deleting an ex-
ceptional set E ⊂ MN and its image C ⊂ Mm+1 of codimension
at least two, a finite map which is a resolution. Our section
restricts on MN \ E ⊂ U to a section of the pullback of ΛnΩ⊗i

Mm

modulo torsion. Except on the inverse image of C this agrees
with a section of the of the (locally free) pullback modulo tor-
sion of ΛnΩ⊗i

Mm
to the normalization of Mm+1. It extends to a

global section as in the normal case.
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It is tempting to summarize the results by saying that D[n + 1]
is relatively ample on U, D[n] is relatively eventually basepoint
free, and D[−1] is canonical with classical relative plurigenera
(the same as a resolution). A difficulty is that we have to clarify
what ‘ample’ and ‘eventual’ actually mean, because both defi-
nitions implicitly refer to an index r(p) associated to each point
p ∈ U . In the algebraic case semicontinuity of the best r(p) in
the Zariski topology and quasicompactness give a bound and it
had not been necessary to distinguish the cases. Here we need
to clarify whether we intend the r(p) to be bounded above. The
assumption that M is a manifold is not important since any
singular manifold is contained in a nonsingular manifold.

16. Definition (clarification). Let τ : U → M be a map of
smooth complex manifolds.

a) A Cartier divisor (or Q-divisor) D on U will be called uni-
formly relatively ample if some multiple rD is relatively
very ample.

b) It will be called non-uniformly relatively ample if never-
theless for each point p ∈ U there is an index r(p) depend-
ing on p and neighbourhoods T of p and S of τ(p) such that
Γ(S, τ∗OU(rD)) separates points and tangent vectors on T ;
ie that the blowup Blτ∗OU (r(p)·D) → M contains a copy of T
and the restriction of τ to T is induced by the structural
map of the blowup.

c) It will be called uniformly eventually relatively basepoint
free if there is an index r such that OU(rD) is relatively
basepoint free.

d) It will be called non-uniformly eventually relatively base-
point free if nevertheless every point p has in index r(p)
depending on p and neighbourhoods T of p and S of τ(p)
such that the restriction map Γ(τ−1(S),OU(rD)) ⊗ OT →
OT (rD)) is surjective.

The terminology is chosen so that the uniform case is included
in the uniform case, characterised by the boundedness of the
r(p).
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In this sense then

17. Summary. The Cartier Q-divisors D[N ] on the manifold U
are such that

D[N ] is







non-uniformly relatively ample, N ≥ n + 1
non-uniformly relatively eventually basepoint free, N ≥ n

canonical with classical relative plurigenera, N = −1

Things can be made absolute rather than relative in the case
M is quasi-projective. We let F = OV (H) for H a hyperplane
section. Then, for example

18. Theorem (some global variants) Suppose M is quasi-projective
and H is very ample on M. Then

a) Each divisor Di +(n+2)i(n+1)τ ∗H is absolutely basepoint
free on U.

b) For each N ≥ n + 1 and every point p ∈ U a suitable inte-
ger multiple of the Q-divisor D[N ] + (n + 1)τ ∗H defines a
projective embedding of a neighbourhood of p.

c) For N = n a suitable integer multiple of D[N ] + (n + 1)τ ∗H
depending on p has base locus disjoint from p

d) For N = −1 and for all j the global sections on U Γ(OU(j(D[−1]+
(n + 1)τ ∗H)) are the just the global sections Γ(M ′, j(KM ′ +
(n + 1)π∗H) for a resolution π : M ′ → M.

e) If M is normal, the fiber in U over each singular point of M
always contains at least one contractible complete curve C
with D[n] · C = 0.

Part d follows from Theorem 14 by the projection formula.

19. Remark. It appears also to be true in the toric case if one
makes the strange assumption that all the ΛnΩMi

/torsion on
the terms of the Nash tower are reflexive then for some reason
the basepoint-free results extend all the way down to D[0].
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11. Questions

The obvious idea, before trying calculations, is to look for suc-
cessively stronger basepoint free theorems to attempt to find a
series of proper maps in either direction relating Y0 with V, fol-
lowing Mori’s discovery [13]. If M locally admits a smooth one-
dimensional foliation, for example, then the next map Y0[n] →
Y0[n−1] is also a locally projective holomorphic map. Note that
the locally projective morphisms are in the opposite direction
from the affine morphisms. In general there is no idea what
modification of Y0[n] can creates a useful relatively-basepoint-
free divisor. Theorem 1 is merely tautological, as opposed to
more substantial basepoint free theorems in algebraic geome-
try.

If M is not only a complex manifold but a singularly foliated
complex manifold then n may be replaced not by the codimen-
sion but the dimension of the foliation, and all the above holds,
except it refers not to the Nash manifold, but to the smoothly
foliated singular manifold which results by repeatedly blowing
up the foliation itself.

20. Conjecture. Suppose M is a complex vector space singu-
larly foliated by the faithful split action of a commutative Lie
algebra. Then the foliation is resolvable by a locally projective
degree one morphism from a singular variety with a nonsingu-
lar foliation if and only if the set of roots (ignoring multiplicity)
forms a basis of the dual of the Lie algebra.

This is worked out in the case of toric resolutions in an unpub-
lished arXiv preprint [19]. The same preprint claims without
proof

21. Theorem. Suppose M is a complex singular projective
variety with very ample divsor H and that M has a singular
foliation of dimension s such that the canonical divisor K of
the foliation satisfies that K + (s + 1)H is a finitely-generated
divisor of Iitaka dimension one. Then the foliation can be re-
solved by one or more Nash blowups of the foliation.
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This is true because the successively higher Nash blowups are
induced by maps to algebraic curves Wi. The rational function
fields C(Wi) are all contained in a subfield of a field of tran-
scendence degree one. Therefore the rational function fields of
the Wi stabilize and then the Wi are bounded by the unique
birational model.

Note also that even though the ring ⊕iΓ(Fi) may conceivably
fail to be finite type, the sheaf ⊕iFi actually must then be finite
type. That is, since the BlFi

M are eventually isomorphic over
M for large i, the Fi pull back to invertible sheaves on suitably
high Nash blowups. By Theorem 1 then when i is a large power
of N + 2, FN+2

i → Fi(N+2) is onto.

The canonical sheaf is the simplest primary component of the
highest exterior power of the differentials. This component is
invertible precisely when −K0 is an effective exceptional divi-
sor in the Nash tower. In general, if it is not invertible, if we
blow up only this primary component the resulting map is not
the identity; if we do so repeatedly

22. Conjecture. If we blow-up only upon the codimension one
primary component of ΛnΩ/torsion at each stage,ie its reflex-
ivication, then after finitely many steps the reflexivication will
be invertible; there results a proper morphism from a singular
manifold with invertible canonical sheaf.

The conjecture is easily verified to be true for toric surfaces.
The pullback modulo torsion of the canonical sheaf is an in-
vertible subsheaf of the reflexive canonical sheaf, and so there
is an effective Weil ramification divisor. The process finishes if
and only if the Weil ramification becomes zero and that is what
the conjecture asserts.
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Hironaka’s and Spivakovsky’s theorem is that for surfaces nor-
malized Nash blowups do yield a proper map of a smooth man-
ifold to M . There appears to be a great distance between the
normalized and non-normalized Nash blowups.

When F is taken to be OM then functoriality in the title is with
repsect to degree-one holomorphic maps of M. Strictly speak-
ing it applies only to F [N ] for N ≥ n, after passing to integral
closure. For example, the Grauert-Riemannschneider sheaf is
the integral closure of F1[−1] when F = OM , and this is not a
functor. The failure of functoriality however is only due to the
fact that Hom is contravariant in one of its arguments.

That is, a corollary of part d) of Theorem 14 and the defi-
nition of Xi[−1], yields an elementary calculation of Grauert-
Riemenschneider’s sheaf whenever F is invertible (e.g. if F =
OM )

23. Theorem. Suppose M is bounded (within a possibly larger
manifold of the same dimension). The Grauert-Riemenschneider
sheaf of M is the integral closure of F−n−1Hom(F(n+2)i−1,F(n+2)i)
for all sufficently large value of i.

The calculation of the sheaf has already been within the range
of computer since resolution of singularities algorithms exist.
A simpler method would be to use the formula above if there
were a way of determining what value of i gives the largest
answer.

24. Remark. Since for all j there is an i so that the pushfor-
wards to Y0 of OU(jKU) is dual to the pullback from M to Y0

of F⊗j

(n+2)i−1
times the inverse of the pullback modulo torsion of

F⊗j

(n+2)i then it is a reflexive sheaf for all j on any bounded open

subset of Y0. According to a question of [7] then it is not known
whether Y0 has canonical singularities.
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12. Appendix

We will finish this note by describing the proof of properness of
V → M. In this section we assume M to be normal and locally
algebraic. Refer to [21,22,23] for the full list of references and
full statements of theorems. Recall π : M ′ → M is a resolution.

Kempf describes things this way in his article which happens
to be in the Springer Lecture notes [6] about toroidal embed-
dings: although we have not assumed 0 = Riπ∗Λ

nΩM ′ for i ≥ 1,
Grauert-Riemenshneider vanishing says this is true.

We may assume M is a closed analytic subvariety of a disk A by
an embedding i of codimension c. The sheaf Λdim(A)ΩA is isomor-
phic to OA but not canonically and we shall be needlessly rigor-
ous about the notation by distinguishing them. Since all higher
derived functors vanish, duality simply implies ExtcOA

(−, Λdim(A)ΩA)
interchange i∗π∗OM ′ and i∗π∗Λ

nΩM ′ . The isomorphism OM →
π∗OM ′ coming from normality of M gives when we apply i∗ and
apply our Ext functor

i∗π∗Λ
nΩM ′

∼= ExtcOA
(i∗π∗OM ′ , Λdim(A)ΩA)

= Extc(i∗OM , Λdim(A)ΩA)

= i∗Extc(OM , Λdim(A)ΩA)

Removing the i∗ this is the double dual of the highest exterior
power of differentials of M, ie the result of removing all but
codimension one primary components. Thus this is the push-
forward of the highest exterior power of the differentials of M ′

∼= i∗π∗Λ
nΩM ′ .

The definition of rational singularities doesn’t imply the π∗OM ′(iKM ′)
for i ≥ 2 are the sheaves associated to the divisors iK where K
is the canonical divisor. The duality argument above does not
extend to the higher values of i. The condition that π∗OM ′(iKM ′) =
OV (iKM), with the extra condition of Q-Cartier (but note it is
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stated in [7] that the extra condition may be automatic) is the
definition of M having canonical singularities.

Always one inclusion holds π∗OM ′(iKM ′) ⊂ OV (iKM), and this
is natural independent of choice of M ′. This is because M is
normal, and any Weil divisor is then Cartier except on a locus
of codimension at least two. To see this, we can assume we
are talking about an irreducible Weil divisor which for a nor-
mal variety corresponds to a symboic power of a height one
prime ideal. Choosing an element of the local ring at that
prime which generates the corresponding power of the prime
ideal, this defines the same divisor except on a locus of vanish-
ing of a single element, and the divisor of this element in each
affine coordinate chart of a finite cover of the divisor meets the
divisor in codimension at least two.

Then the blowup of any sheaf of ideals, by taking a primary
decomposition, we see it is an isomorphism away from a codi-
mension two locus. Or we could have chosen our resolution
to be an isomorphism away from the codimension at least two
singular locus. In any case then the direct image of OM ′(iKM ′)
agrees with OV (iKM) except in codimension at last two. The
latter has no primary components with associated primes of
height other than one, and so cannot be made larger without
affecting something codimension one.

Shepherd Barron in dimension 3 [8] and Elkik in dimension
≥ 4 [9] answered one of the questions in [7] namely that the
Cohen Macaulay property, vanishing of all but one Ext, does
follow from the conditions of canonical singularities.

Assume the relative minimal model program as described in
the conjecture of [11] holds for the resolution of π : M ′ → M. So
we are assuming Mori’s sequence of contractions (followed by
passing to the relative canonical model) [13] leading from M ′ to
a variety q : Mt → M which has KMt

relatively nef over M and
terminal singularities. The relative basepoint free theorem as
described in the textbook [21], page 94, even in the analytic
case, gives some iKMt

relatively basepoint free. Choose a reso-
lution h : M ′′ → Mt of Mt; one has

h∗O(iKM ′′) = O(iKMt
)
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By relative basepoint freeness this is

= q∗q∗OMt
(iKMt

)

= q∗q∗h∗O(iKM ′′)

By uniqueness (which uses normality of M, that iKM ′ is Cartier
and contravariant) this is

= q∗π∗O(iKM ′).

= q∗ωi

It follows from these (inefficient) formulas that

q∗OMt
(iKMt

) = ωi.

The relative basepoint freeness holds with i replaced by 2i, 3i, ...
because all it is saying is (assuming as we may that M is affine)
that at each point of Mt there is a global section with the cor-
rect order of pole there, and powers of global sections give the
correct order for multiples of the divisor. Therefore there is a
continuous function Mt → V over M and compact subsets of M
lift to compact subsets of Mt which remain compact in V.
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