
Primer on Classical Mechanics

The notion of a one-form

A one-form on a manifold is a measure of distance. Examples are,
on a globe of the earth, degrees to the east, radians to the east,
degrees to the north, or radians to the north.

It is not possible to know how far to the east one has travelled, just
from knowing the starting and ending positions of the trip. One
describes this by saying that the one-form of ‘degrees to the east’
is not exact. Whereas, degrees to the north is the differential of
latitude which is a well-defined function.

The one-forms of degrees to the north, and radians to the north, are
scalar multiples of each other. Also, radians to the east and miles
to the east are multiples of each other but not by a scalar, rather,
by the number of miles from the axis which is a smooth function on
the manifold.

Every one-form is a finite sum of such re-scaled exact forms on every
part of an open cover, and for smooth real manifolds, with an upper
bound on the dimensions of the connected components, this implies
that every one-form is a finite sum of exact one-forms times smooth
functions, sums of parts like we just considered. Just write the
function 1 as a sum of parts which are zero except on one of the
open sets of a suitable cover, then the one-form (times one) is a sum
of one-forms on the separate open parts.
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The universal one-form

Continuing with the example of a globe, the cotangent bundle is four
dimensional and is difficult to visualize, but here is a property which
any cotangent bundle has: any smooth arc there (parametrized by a
closed interval in the real line) has a well-defined measure, a number
(an element of the base field), that is specified without any need of
choosing a unit of measurement.

Any cotangent bundle has a natural one-form which can be inte-
grated along any such smooth arc to find its measure.

Moreover, for any compact (oriented) surface with boundary in a
cotangent bundle, we may integrate around the boundary to obtain
an element of our base field which is then a flux through the surface;
and we could obtain the same number then by integrating a univeral
two-form over the surface. So any such surface has a well-defined
flux or signed area.

However, if we look at an example we will see that this is not mys-
terious at all. For, a section of the cotangent bundle on an open set
is no different than an open subset of the original manifold, which
is furnished with a one-form already. That is, if we take, say, the
lower hemisphere of the earth, and furnish it with the one form
which measures radians to the east, then we are looking at a section
of the cotangent bundle. The canonical length of any arc there is
just the measure of the eastward extent of the arc. Any arc can
be moved into a section like this if M has dimension larger than
two. As long as M has dimension larger than four, any smooth
surface can be moved transversely to the fibers and then it is con-
tained in a section too. For example, the lower hemisphere of the
globe furnished with the one-form of radians to the east, which we
are looking at already, is itself a section of the cotangent bundle1

and the universal flux through this surface section is just the total
eastward extent of the boundary, which is 2π. 2

1The south pole itself would need to be sent to a point at infinity in its cotangent space.
The relevant one-form, if we parametrize things by complex numbers in the obvious way, is
the real part of − i

z
dz which, appropriately enough perhaps, has a simple pole at the south

pole
2If it is divided into regions, all the flux is through whichever region contains the south

pole in its interior, if there is one.
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The notion of a vector field

A vector field on a subset U – it doesn’t necessarily have to be an
open subset – of a manifold is a derivation relative to the scalars
(which sends scalars to zero in other words) from OM to OU . This
gives a unique OM linear contracting map on cotangent sections
ΩM → OU and conversely any OM linear map gives a vector field on
U. If M is included in a Euclidean space E this gives a map from the
pullback of ΩE to OU which we know how to visualize as a ‘vector
in Euclidean space’ in a familiar way.

If U is open and we restrict the derivation to U itself we obtain just
a derivation of OU and in this way it is possible to compose vector
fields. The composite is not a derivation but the Lie action is is.
The Lie action of δ acting on a vector field τ is defined

δτ(f) = δ(τ(f))− τ(δ(f)).

To avoid confusion with the composite, it is sometimes denoted [δ, τ ],
it is antisymmetric and satisfies Jacobi’s identity. However we can
use juxtaposition as long as we aren’t going to write the composites
of any derivations. If a manifold is in a vector space and points are
moving with velocity vector δ then velocity vectors τ are points in
the vector-space, and their velocity vectors are the Lie derivatives
δτ.

We may also take Lie derivatives of one-forms. Let δ(df) = dδ(f)
and extend by Leibniz rule so δ(gdf) = δ(g)df + gd(δ(f)). Define
the linear contraction operator i associated to δ by i(gdf) = gdδ(f).
This sends one-forms to functions and satisfies3

δ = d i + i d.

We can also define the contracting action of i on alternating forms
ω of any degree so that the same continues to hold.4 Note then
i δ = δ i. The velocity vector of a one-form under a flow is just
another one-form, and the same for alternating forms of any degree.

3This is called Cartan’s formula; its relevance to the Lagrangian and Hamiltonian for-
mulations of physics is nicely explained in the Utrech Spring school notes of the late Prof.
Duistermaat, which are on his web page.

4For instance δ(dfdg) = d(δ(f))dg + d(f)d(δ g) is d applied to i(dfdg) = δ(f)dg − δ(g)df.
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Two linear operators

Let M be a manifold (real or singular complex) and let π : N → M
be the tangent bundle. Now we can introduce two different ON -
linear operators on alternating differential forms on N.

An operator η

The one-forms on N relative to M are naturally5 isomorphic to the
one-forms on N which are sections of the pullback from M . Hence
there is a natural ON -linear operator η with

Kernel(η) = Image(η)

which sends any local or entire one-form to the relative form viewed
as a section of the pullback. Note that an individual section of the
pullback does not need to be the pullback of an individual section.
Note also that η is nilpotent of order two, η ◦ η = 0.

The operator j

The Euler derivation ϵ along the fibers of N is also natural, and a
second ON -linear operator is the corresponding contraction j which
operates on alternating differential forms of every degree on N .

5If M is singular one needs to work modulo torsion etcetra, we’ll ignore such adjustments
from now on and assume it is not singular
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Two conditions.

Definition. A flow on N with contracting operator i is called6

involutive, if

i η = j

Definition. A flow δ is Lagrangian with respect to closed a one-
form ω, if

δ η ω = ω

6In terms of school physics, as confusing as that is, this means that when we look at a
point with an arrow emanating from it, as both the point and arrow change, the arrow actually
describes the velocity of the point.
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Lagrangian flows

The following proposition follows immediately7 and formally from
the definition.

1. Proposition. Let δ be involutive. Then and δ is Lagrangian for

ω if and only if

i d η ω = ω − d j ω.

When this holds the flow preserves the two-form d η ω just because
d δ = δ d and δ η ω = ω is assumed to be closed.

7

i d η ω = δ η ω − d i η ω

= δ η ω − d j ω

which equals ω − d j ω if and only if ω = δ η ω.
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The multipicative group action on N

Let M be any manifold, and N → M the tangent bundle. In clas-
sical mechanics, one wants trajectories in the tangent space of an
involutive vector field δ on N not to depend on units of time.

Regardless of what the base field may be, let us denote by C the
one-dimensional representation of the nonzero scalars such that

C⊗ C

has trivial action, where C is the one-dimensional representation
given the ordinary scalar action. The isomorphism between relative
one forms and sections of the pullback can be made equivariant

π∗ΩM
∼= ΩN/M ⊗ C.

A section of the left side which happens to be the pullback of a local
one form on M has trivial scalar action, and the tensor product on
the right side cancels the scalar action on the fibers to agree with
this.

The exact sequence we’ve already seen has a corresponding equiv-
ariant exact sequence

0 → ΩN/M ⊗ C → ΩN → ΩN/M → 0 (1)

which agrees with the sequence we’ve just now considered, but such
that the maps commute not only with the scalar action8 in the
definition of a vector-space but also with the scalar action coming
from the vector space structure on the fibers of N → M.

Correspondingly there is a map η : ΩN ⊗ C → ΩN with

Kernel(η) = Image(η)⊗ C.
We view the contracting map iδ of a vector field δ as a map

iδ : ΩN ⊗ C → ON (2)

and we will say iδ is equivariant if this map is scalar equivariant.
8When the field is finite, even if the action on rational points is trivial or if there are no

rational points, there is a well-known way of defining the scalar action on the fibers of N using
algebra so that there is an algebraic group action on the various coherent sheaves.
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‘Dimensional Analysis’

We won’t require the contracting map iδ of a vector field δ to be
equivariant for the scalar action; but those which are are the inter-
esting ones. There is an old concept in physics called ‘dimensional
analysis’ which requires that when you specify a quantity like accel-
eration, you should write beside it a rational monomial describing
units of measurement. So for instance, one writes the ordinary ac-
celeration of gravity as 10 metres/second2. This reminds us that if
we change from units of seconds to units of milliseconds accelera-
tion vectors are multiplied by the square of that ratio, which is one
million. On a cotangent bundle no numerator of ‘metres’ is needed.

For an involutive vector field δ to have equivariant contracting map
is equivalent to saying that acceleration coordinates are given locally
by quadratic9 forms in velocity coordinates with smooth function
coefficients.

The formulation of familiar problems such as constant acceleration
a = λ can be made equivariant by writing a = λs2 for s the rate of
progress of time.

We don’t assume that contracting maps of actions are scalar equiv-
ariant but they always have a scalar equivariant isotypical compo-
nent corresponding to an underlyling equivariant action.

2. Lemma. If there is any involutive δ there is one such that iδ is
equivariant.

This is true because equivariance is just invariance for the action of
scalars λ given λ · iδ = λiδλ

−1. The scalar action is semisimple and
there is a projection to the invariants. The quadratic forms corre-
spond to the fact that the contracting map applied to a differential
form like ydx is a quadratic form like yx.

9Let’s contrast this with the notion of a symmetric connection: a connection ∇ : ΩM →
ΩM ⊗ΩM is symmetric if closed one forms are sent to symmetric tensors. Here the failure of
being a connection, the coboundary plus the the involution, will be the antisymmetrization on
all one forms therefore the coboundary itself will be symmetric; it will be the symmetrization.
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The notion of a connection

Definition. A connection on the tangent bundle N → M is an
equivariant isomorphism of exact sequences between (1) and the
split sequence

0 → π∗ΩM → π∗ΩM ⊕ ΩN/M → ΩN/M → 0. (3)

It is determined by the map u in the reverse direction of η, and in
cases when one does not wish to require a entire connection, the
sheaf of connections on N is isomorphic to the sheaf of equivariant
OM -linear maps u satisfying

η u η = η.

To say u is equivariant is just to say

u ϵ = ϵ u.

Then the sheaf of connections is represented as the sheaf of endo-
morphisms of ΩN that satisfy both equations. We didn’t really need
to introduce the tensor product with C and we could have used the
map η which we defined before, but this second equation would be
more difficult to state10.

If M is a real smooth manifold, choosing a Riemannian structure
provides one for N. There is an orthogonal complement of the kernel
of η, which is the Levi Civita connection. The involutive condition
on δ just means that iδ has been specified on the left summand,
and can be an arbitrary equivariant map π∗ΩM → ON ⊗ C on the
right summand. Any such map is the same as map ΩM → π∗ON by
the usual adjunction formalism, that is, a section of the pullback of
vector fields on M, and equivariance just means that the image of
ΩM belongs to OM ⊂ π∗ON . So that it is the contracting map of
just one vector field, not a linear combination.

10It would need to say not that u ϵ and ϵ u are equal, but rather we could say that all the
various sheaves are graded according to natural numbers which are eigenvalues of the Euler
derivation, that whereas η decreases degrees by one, u has to increase degrees by one.
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The connection coming from acceleration

If one wishes to use classical physics formalisms on an analytic man-
ifold, one would like an entire involutive vector field δ. (And such a
vector field is Lagrangian for an exact ω = dL if and only if the inte-
gral curves are critical for the time integral of L, under deformations
of the curve). But we have to consider the question of existence of
an involutive vector field δ.

When there is a connection so u = η u η we’ve just seen that iδ = j u
makes δ involutive;11 the next theorem provides the converse of this
argument. It imposes a very serious restriction on which complex
manifolds can have an action, but no immediate restriction on real
analytic manifolds, they have at least one Stein complexification.

3. Theorem. The tangent bundle N of M has an entire involutive
vector field if and only if it has a connection.

We’ll prove this in two steps. By Proposition 2.1.1 of Kapranov
Rozansky Witten Invariants [1] or Proposition 1 of N. Markarian
The Atiyah Class [2] the Atiyah belongs to the +1 eigenspace for
the involution of interchanging the two tensor factors. Since the
intersection of the +1 and −1 eigenspace is zero, we need to show

4. Lemma. The tangent bundle N of M has an entire involutive
flow if and only if the Atiyah class α ∈ H1(M,HomOM

(ΩM ,ΩM⊗OM

ΩM)) belongs to the −1 eigenspace for the involution which inter-
changes the two factors.

We will give two different proofs of this fact to show various ways
of understanding why it is true. The Atiyah class is just the class of
the exact sequence we’ve already looked at, which detects whether
the nilpotent map η is semisimple nilpotent.

Because of Lemma 2, the proofs need only consider the case when
iδ is equivariant.

Important notation. From now on when I write ON ,ΩN , π
∗ΩM ,

I am going to mean the sheaf of abelian groups spanned by the
quasiinvariant sections in whatever category one is working (contin-
uous, smooth, real analytic, or holomorphic). In other words, the
restriction to a radial line in a fiber will be in the algebraic category.

11More explicitly, j is zero on the kernel of η, therefore iδ η = j u η = j u η+j (1−u η) = j
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First proof. The first proof will use formalities of homological
algebra. The extension class of η ⊗ C belongs to

Ext1N(π
∗ΩM , π∗ΩM ⊗ C).

The Leray spectral sequence of N → M is trivial since the fibers are
Euclidean spaces which have trivial cohomology, so the space above
is

Ext1M(ΩM , π∗π
∗ΩM ⊗ C)

Equivariance means that it is in the summand

Ext1M(ΩM ,ΩM ⊗OMd(OM))

= Ext1M(ΩM ,ΩM ⊗OM
ΩM) (∗)

where the d in the right factor is the deRham differential on M. Now
we have the Hochschild12 spectral sequence

Hp(M, ExtqM×M(− ,−)) ⇒ Extp+q
M×M(− ,−)

applied to (ΩM ,ΩM ⊗OM
ΩM) and (*) is the E1,0

2 term which maps
inectively to 13

Ext1M×M(ΩM ,ΩM ⊗ ΩM)). (∗∗)

which is the first Hochschild cohomology of HomOM
(ΩM ,ΩM ⊗OM

ΩM). Here left and right actions are equal so the relevant extension
is a ‘bimodule’ extension, but one made up of two coherent sheaves
where the left and right actions agree.

Returning to consider the exact sequence

0 → π∗ONdOM → π∗ΩN → π∗ONdΩM → 0,

for ω a local section of the right side and r a local section of ΩM we
write rdω = d(rω)−ω⊗dr with the second error term belonging to
the left term of the exact sequence. If we write c(r)(ω) = ω⊗dr then
c is an entire Hochschild one-cocycle representing an element of (**).
From yet a third spectral sequence Hp(M ×M, Extq(Ω,Ω⊗ Ω)) ⇒
Extp+q(Ω,Ω⊗Ω)), a global cocycle represents an E2 element for the
conjugate filtration, thus c represents an element of E1,0

2 ∩ 1E
1,0
2 .

12A. Grothendieck, Sur quelques points d’algbbre homologique, Tohoku Math J. 9 (1957)
119-221

13A bit later on I’ve added a further explanation
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As a verification, let’s calculate the Hochschild coboundary of c to
verify it is zero. Let r1, r2 be local sections of OM and ω a local
section of ΩM . Then

r1c(r2)(ω)− c(r1r2)(ω) + c(r1)(r2ω)

= r1ω ⊗ dr2 − ω ⊗ d(r1r2) + r2ω ⊗ dr1.

This is indeed zero because of Leibniz rule and because the tensor
product is over OM .

Thus we can view ω⊗dr as the cocycle representing the Atiyah class.
The class is antisymmetric if and only if the symmetrization 1

2
(ω ⊗

dr + dr ⊗ ω) plus the Hochschild coboundary of a k linear function
∇ : ΩM → ΩM ⊗OM

ΩM is zero. The coboundary of ∇ applied to
r sends ω to r∇(ω) −∇(rω). Putting the equations together then,
when the coboundary of ∇ is minus the symmetrization, we see that
while that k-linear function ∇ is not quite a connection, it satisfies

∇(rω) = r∇ω +
1

2
(ω ⊗ dr + dr ⊗ ω). (4)

Next, we go into the definition of multiplication of polynomials. This
is a very trivial fact, but for example on the x, y plane the product
of the x and y coordinate functions, evaluated at a point p, is the
specialization to the diagonal points (p, p) of the symmetric product
xy defined by the rule xy(p, q) = 1

2
(x(p)y(q) + x(q)y(p)). Here we

are in a situation where we have just such a symmetric product.

Interpret the both local sections dr and ω on the right side of the
equation (4) as sections of ON , and the average as the symmetric
product of two one-forms interpreted as a product of sections of
ON . The equation shows that the k-linear function which agrees
with d on OM and agrees with ∇ on ΩM satisfies Leibniz rule for
the generators of ON which belong to the lowest degree components
OM and ΩM . The unique extension to a derivation on ON is the
corresponding involutive vector field δ.
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Second Proof.

It is a possible source of confusion, that that even a closed one-form
on M is particular type of coordinate function on N, and therefore
we may apply the deRham differential d on N without getting zero.
Clearing this up a bit actually helps explain very explicitly the ge-
ometric meaning of the cocycle defining the Atiyah class. It is a
matter of looking directly at ΩN when N → M is the tangent bun-
dle of M, or, what is a bit easier, recalling our notational convention
that ON is spanned by quasi-invariants,

π∗ON = OM ⊕ ΩM ⊕ S2ΩM ⊕ ....

This is generated by the first two terms as a sheaf of algebras, and
therefore

π∗ΩN = (OM⊕ΩM⊕S2ΩM⊕...)dOM+(OM⊕ΩM⊕S2ΩM⊕...)d(ΩM).

In the first factor, we may replace d(OM) by its OM -linear span,
OMd(OM) = ΩM and the product indicated actually is a tensor
product then.

However, the second factor is more subtle. What we see is that each
product (SiΩM)dΩM behaves like a tensor product but with an error
term. That is, if r is a section of OM we have for appropriate local
sections a, b

ad(rb) = ardb+ abdr.

The second term belongs to the first factor of our sum decomposition
of ΩN . This explains why ΩN modulo the first term is a tensor
product, that is, the pullback of ΩM from M.

To lift the tensor product structure to an appropriate subsheaf,
which will then be a complement of the kernel, if we wish to do
this equivariantly we are required to send the first term ΩM into the
sum

ΩM ⊗ ΩM +OMd(ΩM).

This is precisely the principal parts sheaf.
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There are now two different ways14 we are using the same letter d.
A section of ΩM is a linear combination of dx for x a section of OM ,
and here the letter d denotes the deRham differential on M. When
we apply d again in the right term, we are not taking the deRham
differential of a one-form. Rather, we are interpreting each one-form
dx as a function on N, and so linear combinations of dx are again
functions on N , and then applying the deRham differential on N.

If we remove the coeficient sheaf OM in the right term, the decom-
position will be a direct sum, but the second term will no longer be
an OM -linear subsheaf. To have an OM -linear direct sum decompo-
sition we have to replace each d(ω) by some d(ω)−∇(ω) such that
∇(ω) ∈ Ω⊗ Ω and d−∇ is OM linear. That is,

d(rω)−∇(rω) = rd(ω)− r∇ ω.

This requires the usual rule for covariant differentiation

∇(rω) = r∇(ω) + ω ⊗ dr.

Here ω in the second term is a function which is a coefficient of a
one-form in the usual way. Note also that when this holds, we have
lifted the tensor product structure. Since

(d−∇)rω = r(d−∇)ω
the sheaf

S·(ΩM)(d−∇)(ΩM) ⊂ (S·Ω)dOM + S·ΩMd(ΩM)

is a complement to the subsheaf S·ΩMd(OM), and the reason it is
isomorphic to the tensor product is that the condition for ∇ to be
a connection contrives that (d −∇), being OM linear, acts exactly
like a tensor product sign.

14It is tempting to call them d and d′ as one does with the holomorphic and antiholomorphic
differentials
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If we only wish to produce an involutive vector field with equivariant
contracting map, we can push out the exact sequence we have been
considering

0 → π∗ΩM ⊗ C → ΩN ⊗ C → π∗ΩM → 0

We push out along the map

j ⊗ C : π∗ΩM ⊗ C → ON ⊗ C

This map is induced by ΩM → π∗ON the inclusion as the degree-one
term, and the image is then the ideal sheaf generated by the degree
one part, which is the defining ideal of the zero section M ⊂ N.

If we restrict attention to scalar invariant summand for the scalar
action on N we have that in the principal parts sequence

0 → ΩM ⊗OM
ΩM → P(ΩM) → ΩM → 0

the image of the leftmost term under the map induced by j is the
second symmetric power S2ΩM . The antisymmetric part of the ker-
nel of the principal parts sequence is sent to zero. The pushed-out
sequence splits if and only if the extension class is negated upon
interchanging the two tensor factors15.

This completes the proof of the lemma and therefore the theorem.
By naturalityh of Chern classes, it implies

5. Corollary. In a compact Kahler manifold with an action, any
open subset U must be such that any cycle representing a Chern
class is homologous to zero within U itself.

For the case of the Euler class, if it is not zero, and an action exists
at all but one point, then the vector field at that point isn’t allowed
to be zero (corresponding to a singular foliation). If dim(M) > 1 it
must actually be indeterminate.

15An amusing way of combining ideas is to consider that both η and j are differentials in
locally free exact chain complexes on N

η→ ΩN
η→ ΩN → ΩN/M → 0

↓ :
Λ2ΩN/M → ΩM/N → ON → OM → 0

.

Here j is diagonal ΩN → ON and induces the lower row which is exact. The dotted arrow
would be i, resulting in a map of locally free resolutions of the resulting cokernel map ΩN/M →
OM , which is a field of vectors relative to M defined along M.
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Chern’s character

Let F be a locally free coherent sheaf on M. As we saw earlier in the
case F = ΩM , the Leray spectral sequence of M×M → M → point
maps E1,0

2 = Ext1(F ,F⊗ΩM) injectively into Ext1M×M(F ,F⊗ΩM).
Atiyah’s class mapped to the element represented by the Hochschild
cocycle c(r)(f) = f ⊗dr. If F is locally free this is an element of the
Hochschild cohomology of EndF ⊗ Λ·ΩM and each shuffle power cp

represents an element of ExtpM×M(OM , End F ⊗ ΛpΩM).

Because it is represented by a global cocycle it is also in the term

1E
p,0 of the conjugate filtration for the spectral sequence H i(M ×

M, ExtjM×M(F ,F ⊗ ΛpΩM) ⇒ Exti+j
M×M(F ,F ⊗ ΛpΩM).

And because it is a power of c, it is contained in the term Ep,0
2 =

Hp(M, End(F)⊗ΛpΩ) for the Leray spectral sequence, which by the
trace map End F → OM to Hp(M,Λp(ΩM) = Hp,p(M,C), gives a
(p, p) form if M is compact Kahler, for instance. The shuffle power
cp representing the class in the intersection Ep,0

2 ∩ 1E
p,0
2 is just

the Hochschild p cocycle of Hom(Ω,Ω⊗ΛpΩ) sending local sections
r1, ..., rn to the function cp(r1, ..., rn) defined by the rule that for any
local section ω

cp(r1, ..., rn)(ω) = p!ω ⊗ dr1 ∧ ... ∧ drn,

and so the cohomology class αp/p! which is the degree p part of the
Chern character is represented by the cocycle sending local sections
r1, ..., rn to the function sending f to

f ⊗ dr1 ∧ ... ∧ drn.

on F ⊗ ΛpΩM . 16

16It may be tempting to formalize this as the ‘trace’ of the identity endomorphism of
F ⊗ ΛpΩM , and this can be done because the map c is represented by an alternating form
inducing the identity endomoprhism there, and the ‘trace’ of any other endomorphism ϕ does
give an analogous global Hochschild cocycle. However, the elements of Hp,p(M,C) that arise
can be obtained more easily by just applying the vector space endomorphism Hp,p(M,C) =

Hp(M,ΛpΩM )
ϕ→ Hp(M,ΛpΩM ) = Hp,p(M,C) to the ordinary Chern character of F .
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Remark. The identity endomorphism of ΩM ⊗ ΛpΩM sending ω ⊗
ϕ 7→ ω ⊗ ϕ if we locally write ϕ = dr1 ∧ ... ∧ drp is the Hochshcild
p cocycle which is 1

p!
times the p’th power cp(r1, ..., rp)(ω) = dω ∧

dr1 ∧ ... ∧ drp. Writing c(r)ω = dr ⊗ ω then the shuffle power

cp(r1, ..., rp)(ω) =
∑
σ

(−1)sign(σ)drσ(1) ⊗ drσ(2) ⊗ ...⊗ drσ(p) ⊗ ω

= (−1)p−1(p− 1)! ω ∧ j(dr1 ∧ ... ∧ drp)

.

The occurrences of d to the right of the first tensor sign are the
deRham differential on N, we might we use d′ in place of d for
these so that the Euler contraction j has j(d′r) = dr; it gives an
alternating sum where one factor is brought to the left to play the
role of drσ(1). The conjugate element (−α)p/p! ∈ Hp,p(M,C) is the
trace of the endomorphism ω ⊗ ϕ 7→ −1

p
ω ∧ jϕ. From the rule (c +

c)c = 0 one has eα+α = 1 + eα − e−α and antisymmetry gives eα =
e−α. Thus antisymmetry of the Atiyah class gives that the Chern
character plus the trace of 1

p
ω ∧ jϕ is zero, but in fact both terms

are zero separately.

Remark. Here is what happens if one starts with a symplectic
manifold M such as a cotangent bundle. Then in the exact sequence
0 → π∗ΩM → ΩN → ΩN/M → 0 the end terms are dual to each
other as locally free coherent sheaves on N, and so the map j :
π∗ΩM → ON induces a natural global section of ΩN/M . Also there is
a symplectic structure on ΩN coming from the fact that the two end
terms are dual. If it is possible to lift the global section of ΩN/M
to a global section of ΩN then pairing against this extends j to a
map iδ on the whole of ΩN providing an involutive vector field δ.
The cohomology class which obstructs lifting this one vector field
is in H1(N, π∗ΩM) = H1(M,π∗π

∗ΩM), and if one assumes things
are scalar equivariant as we may, it is in H1(M,S2(ΩM) ⊗ ΩM) =
H1(M,Hom(ΩM , S2(ΩM)). It is likely just the Atiyah class again,
encountered intact. An abstract isomorphism between ΩM and its
dual need not be sufficiently natural to provide any entire action;
and this is so even when it is from a structure of M as a cotangent
bundle of, say, M0, unless the individual Chern roots α of M0 itself
satisfy that the eα + e−α together add to zero17.

17Let’s state this here since we didn’t get any chance to use it! T orM×M (OM ,OM ) is the
same as Λ·ΩM .
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Real manifolds

Here then is the situation with real analytic manifolds. If M is
a real analytic manifold, then there is always an entire action on
the tangent bundle. This extends to a holomorphic action on a
neighbourhood of the real points in any complexivication. However,
applying Coro 5 to a tubular neighbourhood of the real points forces

6. Corollary. If a real action has any smooth invariant18 manifold
with a nontrivial Pontryagin class then the action does not extend
to a holomorphic action on (the tangent bundle of) any Kahler com-
pactification of a complexification of M .

By Novikov’s theorem, this cannot be corrected by altering the
smooth structure of M, and it means that certain topological con-
figurations just never occur in this way.

By Hirzebruch’s signature theorem,

7. Corollary. Let M be a real manifold with an action. If any
smooth invariant submanifold has nonzero signature, no complexi-
fication of the action extends to a Kahler compactification.

If the points of M are configurations of some planets under gravity,
the action is only defined when no planet intrudes into the radius of
another. Ignoring rotations of the planets the action extends ana-
lytically to the complement of the multidiagonal by pretending the
masses were concentrated at the centers. It is indeterminate on the
multidiagonal, though one may wish to compactify at infinity by a
projective space. One might also wish to replace the multidiago-
nal by blowing up a nonreduced scheme structure in an attempt to
remove indeterminacy. This is a Kahler compactification. If any
smooth limit cycle has a nontrivial pontryagin class it would then
be impossible to extend the action holomorphically without some
remaining indeterminate points.

18The notion of invariance needs to be clarified when the submanifold has dimension larger
than one and is smaller than M . A limit circle in N which maps to its image in M via a covering
map has the property that the image in M has tangent bundle an invariant submanifold of
N because the action spans the tangent bundle of the submanifold. For higher dimensional
invariant submanifolds the proofs require invariance to mean a smooth submanifold of M with
tangent bundle a submanifold of N invariant under the flow.
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Cycles relative to the boundary representing Pontryagin classes are
sets of ordinary configurations of the planets, not anything myste-
rious having to do in any way with very large or small distances or
compactifications, and the action as it is given has no indeterminacy
there. Yet a nontrivial Pontryagin class of an invariant manifold im-
plies that no scheme structure on the multidiagonal can be blown
up to remove the indeterminacy. So they relate to unresolvability
of things which which in real life may be fictitious, infinitesimal or
infinitely far away.

It follows that if an invariant manifold, such as a smooth limit cycle,
for the n body problem has nontrivial Pontryagin class, and if the
action were holomorpic on the divisor at infinity, then there is no
scheme structure on the multidiagonal which is invariant for the
action and whose blowup (of M) is free of singularities.

This is true because an invariant scheme structure on the multidi-
agonal would result in a vector field free of poles on the exceptional
divisor which is ruled out by the nontrivial Pontryagin class. Note
that if the resolution were smooth, the resolution map would just
be a map of smooth manifolds whose critical image is contained in
the multidiagonal.

But this is a triviality as it is, we should consider analogous state-
ments when the action is allowed to be meromorphic at infinity.
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More about the Lagrangian Condition

8. Theorem If δ is an involutive vector field on the tangent bundle
π : N → M , and iδ is scalar equivariant, then the one forms with
respect to which δ is Lagrangian are precisely the closed forms in
δ(π∗ΩM).

Proof. First let’s show that η δ acts by the identity on π∗ΩM ⊂ ΩN .
If m is a monomial in local sections of ON and f a local section of
OM , using d′ for the differential on N, then

η δ(md′f) = η ( δ (m)d′f +md′δf )

= η (δ(m)d′f +md′df )
.

The first term is zero since η is OM linear and η d′f = 0. In the
second term, η (d′df) = d′f. Such products md′f span π∗ΩM as a
sheaf of abelian groups.

Now if τ is a local section of π∗Ω and δ τ is closed, it is fixed by
δ η and so δ is Lagrangian for ω = δ τ. Conversely, for an arbitrary
closed ω with ω = δ η ω let τ = η ω and one sees that ω = δ τ.

What this means is that for a closed form ω, as long as δ is involutive
and iδ is scalar equivariant, the condition for δ to be Lagrangian for
ω can be simplified, it is enough to check that ω is in the image of
δ η.
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Hamilton’s equation

Choose a closed one form ω on the tangent bundle N of M. Locally
write {

β = η ω
dH = ω − d j ω

so that the equation in proposition 1. becomes

i d β = dH.

The same equation can be formulated not only when N is a tangent
bundle, but also on any manifold N and for any one-form β what-
soever. As a local equation it is equivalent to d β being preserved
under the flow of the vector field δ whose contraction operator is i.
So that the flux through a surface is the same as through any slice
of the local orbits. If we were to apply i again since i i = 0 we
obtain 0 = δ(H), showing that the value of H is conserved under δ.
however, the equation says more without applying i again.19 20

19When N is a cotangent bundle and β the universal one-form, we can see this explicitly.
If M has coordinates xi write points of the cotangent bundle as (q1, ..., qn,

∑
pidxi). Any

smooth function H(q1, ..., qn, p1, .., pn) has differential∑
(∂H/∂qi)dqi + (∂H/∂pi)dpi.

Taking for β the canonical form
∑

pidqi the contraction of the differential i d β is∑
i

δ(pi)dqi − δ(qi)dpi.

In this setting, our equation identifying dH with i d β gives the Hamilton equations{
δ(pi) = ∂H/∂qi
δ(qi) = −∂H/∂pi

solving the ordinary system of differential equations which underlies δ.
20Note in the previous footnote that pi is really just ∂/∂qi, an ordinary coordinate function

on the cotangent bundle, and the canonical form is
∑

∂/∂qidqi. This notation rapidly becomes
confusing, such as writing d∂/∂qi for a one-form on the cotangent bundle.
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The Hamiltonian formulation – what it is meant to do

This section is taken from a later paper, Standing Waves, but it is
of relevance here too.

Firstly, our notation can be simplified if we allow throughout both
the deRham differential d of M and the one d′ of its tangent bundle
N. Recall that ϵ is the Euler derivation, j its contraction operator,
and that a vector field δ is involutive if iδη = j, and it is Lagrangian
for a closed one-form ω on N if δηω = ω.

It is easy to see that the involutive condition just means that when
f is a section of OM viewed as a function on N constant along fibers,
then δ(f) = df, where we view df as a section of ON .

If one examines various statements that Lagrangian forms make
certain integrals critical, they just come down to conditions which
are satisfied just for Lie derivatives of one-forms. They are nothing
but criteria for recognizing when a one-form happens to be a Lie
derivative with respect to a particular vector field, and they do not
need to be considered if one is already happy with the concept that
one forms have Lie derivatives.

In coordinates, locally, a section of ΩN can be written

ω =
∑
i

pid
′dqi + rid

′qi

with pi, ri sections of ON but qi are only sections of OM . Then ηω
is only ∑

i

pid
′qi

an arbitrary section of the pullback of one forms from M. And as
long as δ is involutive, when we write

δηω =
∑
i

δ(pi)d
′qi + pid

′δ(qi)

we can rewrite the last term

=
∑
i

δ(pi)d
′qi + pid

′dqi.
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To say that this equals ω again is to say

ri = δ(pi).

This is just the condition for ω to be the Lie derivative of a global
section of the pullback of one-forms from M. But if ω is exact locally
so it is dL for a function L on M, then

pi =
∂

∂(dqi)
L

δ(pi) =
∂

∂qi
L

giving the familiar Lagrange condition

δ
∂

∂(dqi)
L =

∂

∂(qi)
L.

Given that δ is assumed to be involutive, this is not expressing
anything other than that we are looking at a Lie derivative of a
pullback from M .

The right side can be manipulated by both adding and then sub-
tracting the term

∑
i δ(qi)d

′pi. An organized way of doing that is
to use Cartan’s equation δ = d ◦ iδ + iδ ◦ d. Thus for general
ηω =

∑
pid

′qi we obtain

δηω = iδ(
∑
i

d′pi ∧ d′qi) + d′
∑

piδ(qi).

The first term is the contraction of an alternating form, of course,
and the second term is the differential of a quantity

∑
i pdδ(qi) some-

times interpreted as twice the kinetic energy.
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The point is that since we assume this is an expression for ω and that
ω is closed, so is the first term on the right side. Locally writing
this dH, the fact that iδ is nilpotent of order two forces H to be
invariant under δ.21 The identity between the coefficients of dH and
the coefficients of

iδ
∑
i

dpi ∧ dqi =
∑

δ(pi)d
′qi − δ(qi)d

′pi

is the Hamilton equation which is a simple way of writing an ordi-
nary differential equation determining the rate of change of the pi
and qi. Note that in our current situation considering δ to be invo-
lutive, δ(qi) is anyway nothing but dqi viewed as a section of ON

and the meaningful information in such an attempt would only be
that ∂

∂qi
H = δ(pi).

21If H were interpreted as minus the total energy, then the whole right side would be
interpreted as the deRham differential on the tangent bundle N of minus the total energy
plus twice the kinetic energy, or the difference between kinetic and potential energy, however
we’ll discuss such notions later on.
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As a practical matter, the Hamiltonian approach to solving physical
problems can nicely be summarized like this, then. To choose any
section of your choice of one-forms pulled back from M, which we
locally write if we wish

∑
i pid

′qi and whose Lie derivative ω is closed.
Then if one manages to describe the function

∑
piδ(qi), which is

ordinarily considered to be twice the kinetic energy, one is done.
Because the difference

δ
∑
i

pid
′qi − d′

∑
piδ(qi)

is again closed; locally writing this as dH for a function H on the
tangent bundle, one then has

δ(pi) = ∂/∂qiH.

That is, the rate of change of the pi are determined by the spatial
gradient of H, regardless of however one has chooses the coordi-
nates. The pi are functions on N and as long as dp1 ∧ ... ∧ dpn is
nondegenerate as an n form on the tangent space fibers, the dqi can
be expressed in terms of these and the rates of change of the dqi
obtained by the appropriate Jacobian determinant.

This is an appealling approach to physics, due to Hamilton, it does
not depend on any notion of energy or of conservation of energy,
nor on the interpretation of the function

∑
piδqi as twice the kinetic

energy. The two terms d′H and d′
∑

piδqi are the two terms of the
Cartan equation for δηω. In cases when it is possible to identify the
tangent and cotangent bundle with each other one sometimes takes
for pi the function ∂/∂qi and then

∑
pid

′qi is the natural one form,
though the possibility of doing this relates to one of the problems
that a relativistic approach would need to deal with.
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Local Legendre transformations

Whenever we manage to furnish a path in the manifold M with a
one-form of M along its length, we have lifted that path into the
cotangent bundle in such a way that whatever one-form we were
looking at has been transformed into the universal form β.

For a one-form ω which is not on M but on the tangent bundle N,
the form η ω is not by any means natural or universal, and yet it
is a section of the pullback from M of one-forms on M . When we
calculate an integral of η ω along a path, thinking of the path as
lying in one section of the tangent bundle, the section is isomorphic
to an open subset of M itself, and η ω corresponds to a one-form on
the open subset. Then that same section, since it is furnished with
a one-form, can be interpreted as being a section of the cotangent
bundle, and the form η ω in now agrees perfectly with the universal
one form.

If q1, ..., qn are smooth coordinate functions on M then there are
uniquely defined smooth functions p1, ..., pn on the tangent bun-
dle N such that η ω =

∑
pidqi. Wherever the alternating n-form

dp1 dp2 ... dpn restricts nonzero to fibers of N → M the pi and qi
are ‘canonical local coordinates’ in which Lagrange’s equation, for
any vector field on N which is a priori assumed to be involutive, is
the same22 as Hamilton’s equation.

22If we think of a tangent vector as assigning a value to each qi and a coefficient q̇i to
each ∂/∂qi then when locally ω = dL we have pi = ∂/∂q̇iL. Setting H = L − j d L =
L − ϵ L = L −

∑
i q̇i∂/∂q̇iL gives dH =

∑
i(∂/∂qi L)dqi − q̇id(∂/∂q̇i L) while i d η ω =∑

i δ(∂/∂q̇iL)dqi − δ(qi)d(∂/∂q̇iL). The Lagrange equation says that these are equal as they
are written while Hamilton’s equation says that dH = i d η ω in the canonical coordinates
pi, qi.
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Poisson brackets

Let M be a manifold with closed two-form ϕ preserved by vector
fields δ and τ. This is the same as saying that the dual one-forms
iδ ϕ and iτ ϕ are closed. The condition for δ to preserve iτ ϕ is
0 = iδ d iτ ϕ+ d iδ iτ ϕ with the first term zero. The second term is
d of the evaluation of δ and τ under ϕ, it also equals i[δ, τ ] ϕ. Either
interpretation shows it’s antisymmetric under interchanging δ with
τ, giving a sort of reciprocity:

9. Proposition. δ preserves the singular foliation by iτ ϕ if and
only if τ preserves the singular foliation by iδ ϕ.

Fix now a choice of δ. The τ such that iτ ϕ is closed and which
preserve iδ ϕ comprise a Lie algebra L. Given two such τ, τ ′ the Lie
bracket [τ, τ ′] still preserves iδ ϕ and i[τ,τ ′] ϕ = d iτ iτ ′ ϕ, is not only
closed but exact.

L maps to the kernel of

iδ : ΩM → OM/k.

If ϕ is nondegenerate L maps isomorphically onto the closed global
sections of the kernel, giving them a Lie algebra structure known
as Poisson bracket. The foliation by orbits of δ is an intersection
of codimension-one foliations if and only if the kernel sheaf has the
property that it is the reflexivication of the span of its closed global
sections. When this is the case, the foliation is determined by any
set of Lie algebra generators.

If we take M to be a tangent bundle, and δ to be involutive with
contracting map (2) equivariant for the scalar action and Lagrangian
for a one-form ω for which d η ω is nondegenerate, and if the Lie
algebra generators contract d η ω to exact forms dH then to say
that the Lie algebra generates the kernel up to a reflexivication is
to say that the H are a complete set of ‘classical integrals.’

10. Proposition. Under these conditions, after enlarging the set
of H by finitely many iterated Poisson brackets, the equations H =
constant set-theoretically define every orbit of δ as an intersection
of hypersurfaces.

The Lie algebra includes δ which we chose initially, and the classical
integral corresponding to δ itself is sometimes called ‘energy.’
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Discussion

Compactifying N in Proj of the symmetric algebra sheaf of ΩM ⊕
OM gives the compactification of each fiber of N → M as the com-
plement of a hyperplane in projective space. If M is projective, the
divisor at infinity is a copy of the projectivized tangent bundle of M.
Some integer multiple of this is a canonical divisor K of the foliation
which underlies the chosen involutive vector field δ. The divisor K
need not be preserved by the foliation, but for any divisor E which
is preserved by the foliation there is a map

ΩN(log E) → ON(K)

whose cokernel is supported on the singular locus of the foliation,
which has codimension at least two if M and therefore N is normal.
The global sections of the kernel consists entirely of closed one-forms
by Deligne’s theorem, and any rank one coherent subsheaf of the
kernel with two k-linearly independent global sections describes a
foliation by the fibers of a rational function by Bogomolov’s theorem.

An initial question

The cotangent bundle is admittedly a very appealing object; we
mentioned how there any oriented compact surface with boundary
has a natural flux which can be found by integrating the canonical
form around the oriented boundary.

But a difficulty with the approach of first defining the tangent bun-
dle, where velocity vectors exist, and then defining the different
cotangent bundle, where a universal way of measuring velocity vec-
tors exists, is that even in the first thought experiments about rela-
tivity, one imagines two people each in his own spaceship, with each
one person perceiving the velocity vector of the other.

Maybe it would be better if changing point of view between one
observer and the other incorporated the duality between the tangent
space and the cotangent space. That is, what is the tangent space
for one of the two observers might actually equal the cotangent space
for the other.

For example, the difficulty with constructing a global Legendre trans-
formation ought to be related to the question of the event horizons of
two different observers who are attempting to relate to one another.
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