
More about P 6= NP

The first issue to clarify is: what would qualify as a solution to this
problem? After all, proofs in ordinary English can be constructed
which are easily seen not to be valid, but it isn’t always easy to
explain why. The statement of Richard’s paradox can be given an
English proof, as can its negation.

Here is an example of an obviously wrong proof of a fact, the fact
that an even number added to an odd number results in an answer
which is an odd number. If we were to say, “assume the answer
is even, now Richard’s theorem is true, but we know it false, the
contradiction proves the sum is odd,” we’d see immediately that
this is a meaningless proof.

Now, we set up the P 6= NP problem like this. We set up a formal
language and theory, with a two variable function symbol S, such
that S(m,n) encodes the statement that the m’th Turing machine
(or Javascript function) when given the input S(m,n), fails to return
a proof of the same sentence S(m,n) within n steps. I have explained
elsewhere how it is possible to do this, in the way Godel formalized
the Richard paradox in first order language.

Now, suppose we adjoin all S(m,n) as axioms of the theory, at
least for all m and n less than some large finite bound, and now
fix algorithms m1,m2, which ignore their input and mi simply
state S(1, i) is an axiom, and S(2, i) is an axiom, and S(3, i) is an
axiom....

It is quite possible that some of the mi produce a proof of S(mi, n)
within n steps for some n.

How did this paradox arise? It arises because we have made no
attempt to assert that things provable in the theory should be true
in real life. There is no type of axiom saying “provable implies true.”
As we see that S(mi, n) can be false while it is taken as an axiom
of our theory.

We need to ensure that we do not create a paradox in the real world,
and to deduce what we’re trying to prove only from the paradox.

1

Now, let’s not adjoin the S(m,n) as axioms after all. Rather, let’s
make new function symbols T (m, r, n) which have the meaning that
if algorithm m returns a proof of T (m, r, n) within n steps, then
m = r.

Now, suppose it were true that for some natural number a, algorithm
a were a polynomial time proof-finder, meaning, as we’ve described
it before, that there is a number c such that whenever a statement
w of length s has a proof of length k then a when given input w,
returns a possibly different proof within (k + s)c steps.

Earlier we wished to include enough axioms in our theory so that
for each m and n there is a short proof of S(m,n). We should not be
allowed to use a proof which is paradoxical in real life, even if it is a
valid formal proof. The sense of the evident real life proof is that if
S(m,n) were false, it would have a proof which would be found in n
steps by an algorithm, namely the algorithm m, and the absurdity
of a false statement having a proof implies it is true instead. But if
we use this real-life proof as justification for adjoining all S(m,n) as
axioms, then there can exist choices of m which can prove S(m,n)
within n steps, and the meaning of S(m,n) has changed in real life,
to a false statement. That is, the truth or falsehood of S(m,n)
within the formal langauge depends on our theory and its axiom-
atization, and although the S(m,n) are evidently true in real life,
once we adjoin them as axioms of the theory, they become provable
quickly and hence false in real life. So that it is not that they are
‘true in real life’ to start with, but they are ‘true in real life’ if the
axiomatization we choose has ‘real life’ as a model.

So that we are in a situation where adjoining as axioms to the formal
theory things which are true in real life, makes them become false
in real life even while provable algorithmically in the theory.

That is, adjoining to the theory axioms which are true in life, makes
them become quickly provable formally and hence false in real life.

2

We might be very happy if S(m,n) could be provable at all in the
theory, algorithmically, say, but by a different algorithm than m, and
by a proof whose length f(n) is as we should expect logarithmic in
n. This contradicts m being a polynomial time theorem prover for
if m could prove S(m,n) within (length(S(m,n) + f(n))c steps, we
would have (lengthS(m,n) +f(n))c > n a contradiction for n large.

The difficulty was, we could not use m as the algorithm which is
going to provide a proof of S(m,n), because as we saw, a paradox
arises.

Instead of using the S(a, n) as axioms, we could try using the
T (a, b, n) in an attempt to avoid the diagonal.

For a still being our presumed polynomial time proof-finding algo-
rithm, let’s try adjoining as axioms all T (w, a, n) for which w is not
equal to a; again, for now, up to some finite bound. The T (w, a, n)
for w 6= a are provable in our theory because they are axioms.

If we believe that the real world is a model of our theory, then the
T (w, a, n) for w not equal to a must be true, and so it must be true
that when any algorithm w is given T (w, a, n) as an input, for any
number n, it does not return a proof of T (w, a, n) within n steps
unless w = a.

We have removed the immediate contradiction in the real world,
there is no longer any difficulty with the notion that a finds a poly-
nomial time proof. Because there is a short algorithmic proof of
each T (w, a, n) to within a very small error, a finds a proof within
length(T (w, a, n))c steps. In fact it is consistent now for a to merely
observe that this is an axiom.

The issue is now that within this particular theory it is provable
that there is no other algorithm besides a which does this.

So let’s start over and posit that there are two different polynomial
time theorem provers, a and b. Now we go through what we’ve just
done, adjoining the axioms T (w, a, n) for all w, n up to some bound.

3

And algorithm number b is one of the choices of w. So within our
theory, which has the real world as a model, T (b, a, n) is true,
and has a proof which, presumably is length f(n) logarithmic in
n [this step is currently missing]. Now as before we deduce n <
length(T (b, a, n) + f(n))c and this statement which becomes false
for large n is our contradiction which proves that such algorithms
as a, b cannot both exist.

The proof is still vague and bordering on paradoxical, or perhaps
it is paradoxical, but not quite as stupid as the proof using the
S(m,n).

Perhaps the situation is that any real-life proof is paradoxical, and
all we can do is hide the paradox deeper and deeper. With the
problem of proving P 6= NP there is no difficulty believing the
statement, nor is there any difficulty producing the first proof which
comes to mind, which is paradoxical. And the difficulty is just
hiding the paradox, a step which must be done in constructing any
proof, is more difficult in this case because of the quantification over
algorithms.

May 2017

4

