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I. Considerations of naturality...
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An elliptic curve is a branched double cover of a Riemann sphere
in more than one way. The underlying issue of naturality has
its home in symmetry of torsors for the finite Klein four-group.
The Jacobian of any elliptic curve contains a copy of the Klein
four-group, but different elliptic curves have different Jaco-
bians, and it is not right to say any elliptic curve is a repre-
sentation of the Klein four-group.

This section can be subsumed into Galois theory of fields, or
also into the theory of braid groups and mapping class groups,
or into the theory of covering spaces of manifolds, or, really, into
the theory of the finite group S4 with its normal four-element
subgroup. But it nice to start with elliptic curves without mak-
ing any complicated definition of what they are, just assuming
we know them as an axiomatic starting place like the plane in
Euclid’s theory.

I.1. ...for K4 torsors.

When we consider the natural permutation representation on
a four element set S, there is for each group element g the
‘twisted’ representation gS, defined by the operation ·g so that

h ·g s = g−1hg · s.

The restriction of the representation to the Klein four-group
maps the 24 different twisted representations to six represen-
tations of the Klein four-group.

I.2. ... for covering spaces.

Now we can think of what this means on the level of covering
spaces. Any four-sheeted cover of, let us say, a complex man-
ifold M has a natural associated six sheeted cover M̃ → M,
which may be disconnected even if M is connected, and with
Galois group S4/K4. Each fiber of M̃ → M is the set of six
set-theoretically-oriented cyclic orderings of the corresponding
fiber of the original cover.
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I.3. ... for sphere bundles

Now we can think in turn what this means for Riemann sphere
bundles. The holomorphic fiber bundles with fiber a Riemann
sphere with four points deleted are classified by four-sheeted
covers of complex manifolds M together with a S4/K4-equivariant
period map from the corresponding six-sheeted cover M̃ →
P1 \ {0, 1,∞}. Two such equivariant maps describe isomorphic
bundles over M if and only if the period maps agree after com-
posing with a translation of P1 \ {0, 1,∞} belonging to S4/K4,
in other words a holomorphic automorphism of P1 \ {0, 1,∞}.
The fundamental group of P 1 \{0, 1,∞} is the pure braid group
on three strands on P1 and when M is connected equivariance
under S4/K4 extends the induced map on fundamental groups
to a map from the fundamental group of M to the full braid
group.

For simplicity let’s look at the case when M is connected. The
connected components of M̃ are isomorphic to each other, and
each connected component is a copy of the lowest cover where
the period map becomes well-defined. If M is a connected curve,
this is the ‘Riemann surface’ of the multivalued period map on
M, let us call it λ, and there is a field extension C(M) ⊂ C(M,λ)

describing the function field of one connected component of M̃.

That is to say,

1. Remark. The period map underlying a fiber bundle with
fibers Riemann spheres with four points deleted needn’t be
single-valued; it can be multivalued, defining a covering space
of the base manifold M of degree at most six.
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I.4. ...for bundles of pointed elliptic curves.

Now let’s think of what this means for actual bundles of elliptic
curves with basepoint (i.e., bundles with a section). Given an
elliptic curve J with chosen point p, the subgroup 2H1(J) ⊂
H1(J) ∼= π1(J, p) defines a natural four sheeted regular cover
J̃ → J. The inverse image of p is a four-element subset of J̃
which is a torsor for unique Klein four subgroup of any of the
four group structures of J̃ which correspond to a choice of lift
of p.

There is a unique involution of J̃ with this four element subset
as its fixed point set, and the quotient modulo the involution
is a Riemann sphere with a marked set of four (indistinguish-
able) points.

Applying what we’ve already said about Riemann sphere bun-
dles, we can associate to any fiber bundle of elliptic curves
with a (chosen) section a Galois cover (which is possibly dis-
connected even if M is connected) M̃ → M of degree six and
a S4/K4 equivariant period map M̃ → P1 \ {0, 1,∞}, uniquely
determined up to the six translations (=automorphisms) of P1 \
{0, 1,∞}.

The corresonding four-sheeted cover of M̃ now has a globally-
defined free K4 action. The twists of the K4 torsor are just
translations and all have become isomorphic on M̃. Under the
covering maps J̃ → J the four points in the torsor become iden-
tified with one basepoint in each elliptic curve fiber J and we
recover the section of the elliptic curve bundle.
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I.5. ...for bundles of elliptic curves.

Finally for holomorphic bundles of elliptic curves which may
not have a section, and for which we have chosen no section, we
must specify a complex manifold M and a bundle J of pointed
elliptic curves, and an element of H1(M,J) to choose a torsor.
Thus

2. Theorem. A holomorphic bundle of elliptic curves (without
chosen basepoint in each) is determined by choosing a complex
manifold M, a four-sheeted cover of M, an S4/K4-equivariant
period map M̃ → P1 \ {0, 1,∞}, where M̃ is the corresponding
six-sheeted cover, and finally an element of H1(M,J) where J is
the corresponding bundle of pointed elliptic curves. Two S4/K4

equivariant period maps with cohomology class determine iso-
morphic elliptic curve bundles if and only if they agree after an
automorphism of P1 \ {0, 1,∞}.

3. Corollary. In a bundle of elliptic curves which is connected,
compact and projective all elliptic curve fibers are isomorphic
to each other.

Here we speak literally; in its common usage the term ‘elliptic
fibration’ is allowed to refer to a more general situation where
not all fibers are elliptic curves. In fact, it is the truth of the
corollary which has led to abandoning the use of the term ‘el-
liptic fibration’ in its literal sense to mean a bundle of elliptic
curves, as such a thing in the compact projective case is merely
a torsor of a trivial bundle.

To prove the corollary, just observe that once M and there-
fore M̃ are compact and projective, the holomorphic period map
M̃ → P1 \ {0, 1,∞} is proper and has compact image. The com-
pact analytic subsets of P1 \ {0, 1,∞} however are discrete.
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II. Isogenies

8



Once an elliptic curve E → S is a doubly branched cover of a
Riemann sphere S, then for each choice of a pair of the four
branch points there is an intermediate cover S ′ → S branched
only at those two points, which is another Riemann sphere.
The normalized pullback E ′ → S ′ is another elliptic curve branched
over a Riemann sphere. The induced map E ′ → E is un-
branched. Thus the isogeny E ′ → E covers the branched cover
S ′ → S.

The map E ′ → S ′ is now unbranched at the points of E ′ which
map to the two critical points of S ′ → S.

The isogeny underlies a reduction step in the classical theory
of elliptic integrals. The one-form

dz√
z(z − 1)(z − λ)

whose Riemann surface is an elliptic curve branched at 0, 1, λ,∞
is transformed by the substitution z = t2 to the one-form

2dt√
(t2 − 1)(t2 − λ)

.

whose Riemann surface is again an elliptic curve, now branched
at 1,−1,±

√
λ and unbranched at 0,∞.
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III. Construction of elliptic curves
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Let s be a global section of T⊗2
P1 . Then s(P1) meets the zero sec-

tion P1 at a divisor of degree four. The inverse image of s(P1)
under tensor square

TP1 → T⊗2
P1

is a 2-section of TP1 which also meets the zero-section at four
points. If the four points are distinct, the pullback of the 2-
section of the tangent bundle of P1 to the 2-section viewed as a
double cover, splits into a pair of mutually negative 1-sections
without zeroes, showing that the 2-section itself has trivial tan-
gent bundle.

While the operation of pulling back is undefined at the branch-
ing points, four undefined points in each of the two components
amount to ‘removable singularities.’
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IV. Compactification.
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IV.1 Introduction.

This chapter will be a special case of exercise 17 on page 25 of
the Park City notes on surfaces by Miles Reid: the case a =
1 and α = 4. We continue investigating elliptic curves, now
knowing that we will need to include some singular fibers to
projectively compactify a bundle of elliptic curves other than a
torsor of a trivial fundle.
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IV.2. Abstract theory.

Let b ∈ P2 be a point, and let C ⊂ P2 be a curve of degree
four which does not pass through b. Consider the the pencil
F1 of projective lines through b considered disjoint from each
other (a ruled surface), and its map to P1 viewed as the set of
projective lines through b. Take as M the projective line with
those points deleted which correspond to lines that fail to meet
C transversely. Take as ϕ : π1(M,m) → S4 the monodromy
action on the four points of intersection of m (viewed as a line)
with C. Let M̃ be the connected covering whose Galois group is
the image G = ϕ(π1(M,m)) ⊂ S4/K4. The G-equivariant period
map λ : M̃ → P1 \ {0, 1,∞} extends to a finite map from the
completion of M̃ to P1. Let L be the line bundle on F1 whose
section sheaf is the dual of the defining ideal of the curve C in
F1. Since this has class divisible by two, there is a line bundle
N such that N⊗2 = L. Let s be a section of L whose zero variety
defines C.

4. Corollary. The inverse image in N of the image s(F1) in
L under the tensor square map is a complete projective vari-
ety which is a compactification of the bundle of elliptic curves
defined by the period map λ.
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IV.3. A double cover of P2.

Let’s start slowly. We begin with the projective plane with
given homogeneous coordinates [x : y : z]. We choose four gen-
eral lines; up to automorphisms there is only one choice, and
so we are free to choose the the lines defined by the equations

−2x+ y − z = 0

x+ y − z = 0

x− 2y − z = 0

−z = 0

.

Next, instead of considering the curve which is doubly branched
over P1 at four points, we consider the surface which is dou-
bly branched over P2 over these four lines. Uniqueness of the
choice of lines up to automorphisms means the moduli is re-
duced to a single point; the inverse image of a general line is
an elliptic curve in the surface and the moduli of elliptic curves
is algebraically parametrized by the position of this one line.

Thus we consider the surface which is doubly branched over P2

along these lines. It has six nodes which can be resolved re-
sulting in six pairs of Riemann spheres with each pair crossing
at two points, all with normal degree −2.

The complement of a single point of P2 such as [0 : 0 : 1] can be
given the structure of a line bundle. Let M be a line bundle of
degree one on P1. There is an open embedding

M → P2

with image the complement of the point [0 : 0 : 1], which can be
defined like this: label two basic global sections of M with the
names x, y, and for each pair of complex constants a, b map the
global section ax+by of M to the line in P2, which does not pass
through [0 : 0 : 1], which is defined by the equation z = ax+ by.
There is one point on this line for each value of the ratio [x : y]
and each section of M maps isomorphically to a line in P2 not
passing through [0 : 0 : 1].
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In this way, we can view our four lines as really being sections
of M.

We can construct the double cover of P2 simply like this. Call
our four lines L1, L2, L3, L4 and consider a line bundle L on P2

with a section s such that the intersection of the image of s
with the zero section equals the union of the four lines

s(P2) ∩ P2 = L1 ∪ L2 ∪ L3 ∪ L4

and is transverse except at the six points where two of the lines
meet. The section sheaf of L of L is isomorphic to OP2(L1+L2+
L3 + L4), the isomorphism given on local sections as

OP2(L1 + L2 + L3 + L4) → L

r 7→ rs.

There is a line bundle N with N⊗2 = L and the inverse image
of s(P2) under tensor square

N → N⊗2 ∼= L

is our surface with six nodes.

Let’s name our four sections

e1 = −2x+ y

e2 = x+ y

e3 = x− 2y

e4 = 0

(0)

Since e4 and e1+ e2+ e3 are zero, the tensor equation simplifies

v⊗2 = z4 + (e1e2 + e1e3 + e2e3)z
2 − e1e2e3z. (1)

The extra factor of z on the right appears to be a slight cor-
rection of a mistake by Weierstrass; he had taken e4 to be the
exceptional section, and the surface could not be compactified
because the divisor class of the sum of the four lines was not
even.
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Take our original vector bundle of degree 1 on P1, of which
we’ve labelled two basic sections x and y, to be one which de-
pends naturally on a choice of 0, 1,∞. Namely, we take the
line bundle whose local sections are the local holomorphic one-
forms with at worst simple (=logarithmic) poles of degree one
at those three points. This line bundle extends the line bundle
M2 on P1 \{0, 1,∞} whose sections are modular forms of weight
2 for Γ(2). Hence we may take

x =
π2

3
θ(0, τ)4dτ

y =
π2

3
θ(0, 1 + τ)4dτ

.

The map which converts a modular form to a meromorphic
one-form with at worst simple poles at {0, 1,∞}, both locally
and globally, is the one which is represented symbolically by
appending dτ. As I’ve explained more carefully elsewhere, the
multiplication occurs as a product of a zero form with a one-
form on H whereas on P1 \ {0, 1,∞}, the multi-valued form dτ
has a simple pole at all three points.

Let’s use the letter M2 to refer to this vector bundle of degree 1
on P1 whose restriction to P1\{0, 1,∞} has as its global sections
the weakly modular forms of weight two for Γ(2), and as its
global sections the actual modular forms of weight two for Γ(2).

The projection
P2 \ {[0 : 0 : 1]} → P1

[x : y : z] 7→ [x : y]

is a line bundle projection, and the section sheaf of the vec-
tor bundle has isomorphism type OP1(1), same as the section
sheaf of M2. For each pair of complex numbers a, b, the line
with equation

0 = z − ax− by

not passing through [0 : 0 : 1] is a section of the line bundle,
and we may quite simply think that the equation asserts that
the fiber coordinate z must equal the section ax+ by of OP1(1).
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At the same time, the right side of this equation of the line is a
global section of OP2(1) which defines the same line in P2 by its
intersection with the zero section.

Our equation (1) describes a section v of OP1(2) whose tensor
square equals the product of the four sections

(z − e1)(z − e2)(z − e3)(z − e4)

a section of OP2(4) defining the union of the four lines.

In the section after next, we’ll return to looking at the dou-
ble cover of P2. We’ll start to consider the lines in the pencil
of lines through [0 : 0 : 1] to be disjoint, thus resolving the in-
determinacy of the map to P1. This inserts two rational curves
with normal bundle degree −1 into the double cover of P2. The
new rational curves just map to points of P2 but each maps
isomorphically to P1. The inverse image in the double cover of
each line in the pencil which doesn’t pass through an intersec-
tion point of the four lines is an elliptic curve. Before resolv-
ing the indeterminacy, all such elliptic curves meet at just two
points. After resolving the indeterminacy, the elliptic curves
become disjoint and the two points are resolved to two excep-
tional lines.

First let’s include a discussion of Weierstrass’ function.
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IV.4. Weierstrass’ ℘ function

Weierstrass’ relation for the ℘ function

(
∂

∂w
℘(w, τ))2 = 4(℘(w, τ)3+(e1e2+e1e3+e2e3)℘(w, τ)−e1e2e3) (2)

does still hold.

Although (1) and (2) appear to be equations of different de-
grees, we will need to relate them.

Recall T : H → H is our transformation T (τ) = τ +1. Whenever
f : H → C is a function, write fT to be the function defined by
fT (τ) = f(T−1τ). We also define the ‘coboundary’ i(f) = f − fT .
Starting with

A(w, τ) =
θ(w, τ)2

θ(0, τ)2

and
g(τ) = θ(0, 1 + τ)4 − 2θ(0, τ)4

5. Definition. The ℘ function can be defined to be π2/3 times
the eigenfunction for the action of multiplying by g on i, applied
to A. That is,

℘(w, τ) =
π2

3

i(gA)

i(A)
.

Here is where this definition comes from. For fixed τ, in the el-
liptic curve C modulo translation by 1 and τ, the rational func-
tions which express the linear equivalence between the divisor
of order two at the point τ/2 and the divisor of order two at the
point (τ − 1)/2 is a constant a multiple of

θ(w, τ)2

θ(w + 1
2
, τ)2

.

Choose the constant multiple (depending on τ ) to be

θ(w, τ)2θ(0 + 1
2
, τ)2

θ(0, τ)2θ(w + 1
2
, τ)2
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Under the transformation (w, τ) 7→ (w/(2τ + 1), τ/(2τ + 1)) the
equation w = τ/2 defining the pole and the equation w = 1/2 +
τ/2 defining the zero are both affected by adding an integer
multiple of τ to w. The resulting function is therefore invariant
under Γ(2) modulo scalar multiplications. It is in fact invariant
as can be checked on the two generators of Γ(2).

Since θ(w + 1/2, τ) = θ(w, τ + 1) the ratio

R =
AT

A
=

θ(w, 1 + τ)2θ(0, τ)2

θ(0, 1 + τ)2θ(w, τ)2

is therefore an invariant meromorphic function, and we write
a pair of of Z2 ⋊ Γ(2)-invariant meromorphic coefficients to ex-
press ℘(z, τ) as a linear combination of basic one-forms x and
y

℘(w, τ)dτ =
1

R− 1
((R + 2)x− (2R + 1)y).

We can write this

℘(w, τ)i(A) =
π2

3
i(gA).

From the definition of i this is

℘(w, τ)(A− AT ) = gA− (gA)T .

This expands out to be

℘(w, τ)(
θ(w, τ)2

θ(0, τ)2
− θ(w, 1 + τ)2

θ(0, 1 + τ)2
)

=
π2

3
((θ(0, 1+τ)4−2θ(0, τ)4)

θ(w, τ)2

θ(0, τ)2
−(θ(0, τ)4−2θ(0, 1+τ)4)

θ(w, 1 + τ)2

θ(0, 1 + τ)2
).

The one-form
℘(w, τ)dτ
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on C×H is a Z2 ⋊Γ(2)-invariant one-form double pole on 0×H
and various zeroes elsewhere.

By definition 5, the divisor of this meromorphic one-form com-
pares the “translation” invariant subvariety of A with that of
the gA. The restriction of gA to the divisor of zeroes of our one-
form is invariant under T and the restriction of A to the divisor
of poles of our one-form is invariant under T. The divisor of this
one-form is also, hence, invariant under T.

The deRham differential of ℘(w, τ)dτ is a differential two-form;
we can calculate it in the coordinates (w, τ) on C×H as

d℘ ∧ dτ =
∂

∂w
℘(w, τ)dw ∧ dτ

and it too is Z2 ⋊ Γ(2) invariant.

Weierstrass’ relation concerns two line bundles. One is the sec-
ond tensor power of the second exterior power of the cotangent
bundle, let us say of C×H, and concerns the global section

(d℘ ∧ dτ)⊗2

of that line bundle. The other is the pullback of of the line
bundle M3 = M⊗3

1 viewed as a Γ(2) equivariant line bundle on
H along the second projection of C×H, and concerns the section

(℘(w, τ)dτ − e1)(℘(w, τ)dτ − e2)(℘(w, τ)dτ − e3).

Weierstrass’ relation implies (and follows from) the condition
that if we write the first section as a meromorphic function
times the basic tensor (dw ∧ dτ)⊗2 and if we write the second
as a meromorphic function times the basic tensor dτ⊗3, the two
coefficient functions will be identical.

From the equivariant isomorphisms

Λ2ΩC×H ∼= Ω(C×H)/H ⊗ p∗2ΩH

and
Ω⊗2

(C×H)/H
∼= p∗2ΩH
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we can produce an equivariant isomorphism ϕ

ϕ : Λ2Ω⊗2
C×H

∼= p∗2Ω
⊗3
H .

Weierstrass’ relation thus identifies a pair of global sections
which correspond with one another under the equivariant iso-
morphism ϕ between the second tensor power of one line bun-
dle and the third tensor power of the other

ϕ((d℘ ∧ dτ)⊗2) = (℘dτ − e1)⊗ (℘dτ − e2)⊗ (℘dτ − e3).
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IV.5. The elliptic surface

We may take our rational structural map to be λ = (e1−e3)
(e1−e2)

. As a
map whose domain is our double cover of P2 λ is only a rational
map; once we resolve the indeterminacy of λ then we have our
elliptic surface over P1 which still has six nodes.

The cross-ratio
γ =

(e3 − e2)(e1 − e4)

(e1 − e2)(e3 − e4)

factorizes through the structural map defining a quadratic pe-
riod map P1 → P1.

Since we’ve taken the ei to be functions of τ then λ is also a
function of τ, it is precisely the classical lambda function.

The period map factors through the structural map, as we men-
tioned, and equals the quadratic map P1 → P1 which is given

γ(λ) =
1− λ2

1− 2λ
.

The degree-two map λ 7→ γ(λ) sends the values of λ which
parametrize elements of the pencil which meet a crossing point
of two of the same lines, which are

−1, 0,
1

2
, 1, 2,∞,

in order, to
0, 1,∞, 0, 1,∞.

The two branching points of the quadratic period map are when
λ(τ) = e±2iπ/6, where τ = eiπ/2∓iπ/6.

The six singular fibers of the resulting compact projective sur-
face have a node each, which is a node in the ambient surface.
Once the six nodes are resolved, each singular fiber is a union
of two rational curves intersecting at two points each, and each
with normal bundle of degree −2.
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The unresolved elliptic surface S is the inverse image under
tensor square N → N⊗2 ∼= L of the section image s(F1) ⊂ L
with L being the line bundle whose section sheaf is dual to the
defining ideal I of the union of four lines in F1.

The nontrivial Galois automorphism of the map λ 7→ 1−λ2

1−2λ
is

easily calculated, if we say λ 7→ c then λ satisfies that 1− λ2 =
c(1 − 2λ); the two solutions of this equation add to 2c so the
other solution is λ−2

2λ−1
.
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Rather than preserving the image of the classical lambda func-
tion, this automorphism interchanges 0 and 2 and interchanges
1 and −1, and interchanges ∞ and 1/2. The period map de-
scribes a Galois cover of P1 branched at two points, but it is not
possible to lift the Galois automorphism to any automorphism
of H because it sends three interior points to ideal points.

The cover M̃ → M is just trivial (six disjoint copies of M itself
for M = P1 \ {0, 1,∞}), and a connected component is just a
copy of M itself, so there is no need to consider equivariance.

The period map itself is a degree-two Galois cover; the non-
trivial Galois automorphism of P1 induces a non-algebraic au-
tomorphism of our surface S once we view S as the pullback of
a non-algebraic surface along the period map. Our surface S is
analytically a branched cover of degree two, branched on two
smooth fibers. While it is algebraically a branched cover of the
scroll branched along four Riemann spheres.

The connected components of the Picard group of our surface
are a free abelian group of rank 10. It is rationally the same as
H1(S,ΩS) and since the higher derived functors of pushing for-
wards along the branched cover to the scroll are trivial, there
is a basis conssting of the two classes which span Pic of the
scroll, and a rational basis of 8 anti-invariant classes. Six of
these merely had to do with resolving the six singular points.
Two remaining anti-invariant classes remain to be understood.
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IV.6 Analytic parametrization of the surface.

Let’s choose as a fundamental domain for the action of Γ(2),
which is the same as for the action of ⟨T 2, ST 2S, ⟩ since minus
the identity acts trivially, the pair of ideal triangles in H with
ideal vertex set {0, 1, i∞} and {1, 2, i∞}. Let’s call this funda-
mental domain D. The composite

Interior(D) ⊂ H → Γ(2) \H → P1 \ {0, 1,∞} ⊂ P1

extends to a map
D → P1

by which we can interpret P1 as an identification space, made
by gluings on the boundary of D.

We can lift the period map γ : P1 → P1 to a map η : D → D such
that the diagram commutes

D → P1

↓ η ↓ γ
D → P1

.

On the ideal triangle in ideal vertices 0, 1, i∞, consider in order
in the boundary of this triangle the six points 0, 1+i

2
, 1, 1+i, i∞, i.

Consider the holomorphic map which sends the six geodesic
segments in order between these points to the three edges of
the same triangle, so our map on vertices is

i∞ 7→ 0
i 7→ 1
0 7→ ∞
1+i
2

7→ 0
1 7→ 1

1 + i 7→ ∞

.

This describes a branched conformal map, let us call it η. It is
a branched double cover of the ideal triangle, with the branch
point of order two when τ = e2iπ/6. It has the property that for
our period map γ

γ(λ(τ)) = λ(η(τ)).

26



The map and the formula extend by symmetry to the second
ideal triangle needed to cover P1 and the map has a second
branch point in the second ideal triangle.

As the variable τ goes around the ideal triangle in H with
vertices i∞, 0, 1 the corresponding period ratio η(τ) goes twice
around the same ideal triangle. We may write this as a ra-
tio of trigonometric integrals using the isogeny we mentioend
earlier. Write∫ a

0

dz√
z(z − 1)(z − λ)

=

∫ √
a

0

2tdt√
t2(t2 − 1)(t2 − λ)

= 2

∫ √
a

0

dt√
(t2 − 1)(t2 − λ)

=
2√
λ

∫ √
a

0

dt√
(t2 − 1)( t

2

λ
− 1)

=
2√
λ

∫ arcsin(
√
a)

0

dθ√
1− 1

λ
sin2θ

.

27



This last would be known as
2√
λ
F (arcsin(

√
a),

1

λ
).

Then we can recover a value of τ from λ by

τ =
−F (arcsin(

√
−∞), 1

λ
)

F (arcsin(
√
∞, 1

λ
)− F (arcsin(

√
1, 1

λ
)

and

η(τ) =
−F (arcsin((

√
−∞, 1

γ(λ)
)

F (arcsin(
√
∞, 1

γ(λ)
)− F (arcsin(

√
1, 1

γ(λ)
)

Graphing this using Wolfram Alpha, due to a typo I acciden-
tally replaced −∞ with ∞ and it worked even better, the cor-
responding point in P1 was unaffected but the image is in our
originally chosen fundamental domain.

Here are η(τ) when τ is on the intervals [i∞, i], [i, 0], and the
arc 1

2
+ 1

2
e2iπ[

1
2
,1] coloured red, blue, green. These arcs cover half

the boundary of the ideal triangle while their images cover the
whole boundary.
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Here is, I think, a transformation that establishes a correspon-
dence line-by-line when we look at lines through [0 : 0 : 1] in P2.
Define

d(c) =
1− c2

1− 2c
.

This commutes with c 7→ 1− c, that is

1− d(c) = d(1− c).

The rational function

f(T, c) = (1− 2c)
1 + (2c− 1)T

−1 + 7c− 7c2 + (1− 6c2 + 4c3)T
(4)
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satsifies that
f(

1

c− 2
, c) =

1

d(c)− 2

f(
1

1 + c
, c) =

1

1 + d(c)

f(∞, c) =
1

1− 2d(c)

f(
1

1− 2c
, c) = 0.

When we set c = y
x

so that 1− c = λ we see that d(c) = 1− γ(λ).
When we consider a line through [0 : 0 : 1] in P2 and fix the ratio
y
x

to a value of c, then when we apply f to the x coordinate, the
values where the point [x : y : 1] lies on one of L1, L2, L4, L3 are
(in that order) sent to u coordinate of the points [u : v : 1] with
ratio v

u
= γ(λ) which intersect L1, L2, L3 and the single point

[0 : 0 : 1] which corresponds to the exceptional line in the scroll.

The rational map P2− → P2 sending [x : y : z] to [f(x
z
, y
x
) :

f( x
z:
, y
x
) x2−y2

x2−2xy
: 1] is written

[x : y : z] 7→

[(−z+x−2y)(x2−2xy) : (−z+x−2y)(x2−y2) : x3−x2z+7xyz−7y2z−6xy2+4y3].

This rational map is indeterminate at [0 : 0 : 1]. Also at the
three points

[2 : 1 : 0], [−1 : −1 : 1], [1 : 0 : 1].

It contracts the projective line L3 = V (−z + x − 2y) on which
they are located to the point [0 : 0 : 1]. And contracts the line
from [0 : 0 : 1] to each of the three points. When we resolve the
indeterminacy at only the three points we obtain a singular
Del Pezzo surface which can be resolved by un-contracting our
copy of L3.
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If label the linear, quadratic, and cubic forms in x, y alone as

l = −z + x− 2y

q1 = x2 − 2xy

q2 = x2 − y2

q3 = −x2 + 7xy − 7y2

t = x3 − 6xy2 + 4y3

then the map is

[x : y : z] 7→ [lq1 : lq2 : zq3 + t].

If a ratio [x : y] is fixed then [q1 : q2 : q3]. is determined and
then in general there is a unique choice of [l : z] realizing any
linear relation among the three coordinates. This means if we
fix a line through [0 : 0 : 1] in the domain, the points on that
line parametrize general hyperplane sections. Whereas special
hyperplane sections consist of particular pairs of lines through
[0 : 0 : 1]. An intersection of a special hyperplane section with
a general hyperplane section is transverse, and consists of one
point on each of the two lines.

The resulting correspondence between the two lines in each
case is the one which induces an isomorphism between the el-
liptic curves which are double covers of the two projective lines
over their intersection with L1, L2, L3, L4. For, the intersection
points themselves do correspond, and there is a Galois auto-
morphism between the two lines of each pair which shows that
the correspondence is holomorphic.

Another way of constructing the isomorphism without using
the Galois automorphism exists because the elliptic curve which
is the double cover of a generally-chosen line in P2 through [0 :
0 : 1] branched at the intersection of that line with L3, L1, L2, L4

is isomorphic with the elliptic curve over the image of that line
under our rational map, branched over [0 : 0 : 1] and over its
intersection with the three lines L1, L2, L3. And the two lines of
each corresponding pair merely map to the same image line.
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The rational map sends the intersection point of the general
line through [0 : 0 : 1] in the domain with L1, L2, L4 to the inter-
section points of its image in the codomain with L1, L2, L3 and
sends the intersection point with L3 to [0 : 0 : 1].

By construction, if the four points and their images are deleted,
the map of projective lines through [0 : 0 : 1] induced by the
rational map is a holomorphic isomorphism on each line, and
therefore it induces a holomorphic isomorphism of the corre-
sponding elliptic curves. The elliptic curve which is the branched
cover over the line through [0 : 0 : 1] in the domain is the gen-
eral fiber in our elliptic surface S with six singular fibers.

Next let us complement our definition of η by finding a function
ν such that the functions

x =
π2

3
θ(0, τ)4

y =
π2

3
θ(0, 1 + τ)4

z = ℘(w, τ)

u =
π2

3
θ(0, η(τ))4

v =
π2

3
θ(0, 1 + η(τ))4

r = ℘(ν(w, τ), η(τ))

satisfy the rule
[u : v : r] = [(−z+x−2y)(x2−2xy) : (−z+x−2y)(x2−y2) : x3−x2z+7xyz−7y2z−6xy2+4y3].

With η(τ) as we’ve explicitly calculated it, we determine r to
make the ratio true; specifically,

r(w, τ) =
u

f(x
z
, y
x
)

for the rational function f as given in (4), and using this we
could write

ν(w, τ) =
1

2

∫ ∞

r(w,τ)

dT√
(T − e1(η(τ)))(T − e2(η(τ)))(T − e3(η(τ)))

so that (ν(w, τ), η(τ)) will correspond analytically with (w, τ).
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V. Differential calculus on elliptic curves.
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V.1. Fiberwise vector fields

Let S → M be a smooth holomorphic bundle of elliptic curves.
Let L be the corresponding line bundle of Lie algebras on M.
Let S be the coherent sheaf on M which consists of fiberwise
vector fields on S which commute with addition by local sec-
tions of the corresponding Jacobian bundle J → M.

7. Theorem. The sheaf S is naturally isomorphic with the
sheaf of sections of L.

We want to consider more general surfaces mapping to P1 with
some singular fibers.

It is useful now to speak of the line bundle Mk on P1 \ {0, 1,∞}
whose sections correspond to modular forms of weight k for our
group ⟨T 2, ST 2S⟩ for k a positive or negative integer.

A technicality is that there are no global modular forms of
weight 1 for the subgroup of Sl2(Z) which is the inverse im-
age of Γ(2) ⊂ PSl1(Z). Instead, we lift Γ(2) isomorphically to
the subgroup generated by T 2, ST 2S where T (τ) = τ +2, S(τ) =
−1/τ and we define Mk for all integers k to be the vector bundle
on P1\{0, 1,∞} whose local sections are what are called ‘weakly
modular forms’ of weight k for ⟨T 2, ST 2S⟩, that is, which locally
satisfy the transformation law of weight k for that group. One
way to see define what it means to be locally weakly modular
is to directly construct the line bundle Mk for all k as C × H
modulo the action of ⟨T 2, ST 2S⟩ where(

a b
c d

)
(w, τ) = ((cτ + d)kw,

aτ + b

cτ + d
),

and define local weakly modular forms of weight k to be local
sections of Mk.
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The fiberwise vector fields on Mk have divisor the pullback
to Mk of the divisor defining that very line bundle, namely k
times a point up to linear equivalence, where k may be positive
or negative, and local sections of the sheaf of fiberwise vector
fields once restricted to the complement of the singular fibers,
pull back on C×H to the Γ(2)-invariant vector fields of the form
g(τ) ∂

∂w
where g is locally weakly modular of weight −k.

With finer analysis one might be able to show more in more
general situations that such vector fields fix only the singular
subscheme of each fiber, and it is this which forces the restric-
tion on the singular fibers in Kodaira’s classification.

Let’s try to construct a fiberwise meromorphic vector field on S
with a simple pole on the fiber over one of the branching points
of the period map.

The vector field 1
2πθ(0,τ)2

∂
∂w

on C×H is invariant under Z2⋊Γ(2)

for the action of weight −1. Starting at the point at infinity
in each elliptic curve, the paralellogram of ‘time’ {2qπθ(0, τ)2 +
2tτπθ(0, τ)2 : 0 ≤ q, r < 1} is a fundamental domain, covering
each elliptic curve precisely once when τ is fixed, and when τ
ranges over a fundamental domain for Γ(2) this set covers the
complement of the singular fibers in the elliptic surface with
three singular fibers. For each fixed value of τ, the arc of ‘time’
from 0 to 1 double covers the arc in the real projective plane
where λ ∈ (−∞, 0) and the arc of ‘times’ from 0 to τ double
covers the arc in the real projective where λ ∈ (1,∞). The two
double covering arcs meet transversely at the point at infinity
in each elliptic curve fiber.

For our surface with 6 singular fibers we have the basic period
formulas

2

∫ 0

−∞

dz√
z(z − 1)(z − γ(λ(τ)))

= 2πτθ(0, η(τ))2

2

∫ ∞

1

dz√
z(z − 1)(z − γ(λ(τ)))

= 2πθ(0, η(τ))2.
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Twice the integral between two branch points expresses the
integral around each basic closed loop in each elliptic curve
fiber.

That is to say, the vector field on each elliptic curve fiber such
that the directional derivative of z is

√
z(z − 1)(z − γ(λ)) inte-

grates to zero when time ranges from 0 to 2πθ(0, η(τ))2 or from
0 to 2πτθ(0, η(τ))2.

Now let’s use a different coefficient so that our vector field will
have just one pole on one smooth fiber and no zeroes.

Let’s choose as our smooth fiber, the fiber over the the point
of P1 where λ(τ) = e2πi/6. The branching points of γ are fixed
points of γ, so also γ(λ(τ)) = e2πi/6.

We choose a modular form of weight one whose square has a
simple zero at the point γ(e2πi/6). The classical lambda function
takes the value e2πi/6 when τ = e2iπ/6.

Since it is a coincidence that e2πi/6 is fixed by both maps, let’s
write this explicity:

γ(λ(e2πi/6)) = γ(e2πi/6) = e2πi/6.

We take as our modular form, because of the rule 1 + e2iπ/3 =
eiπ/3, to be

f(τ) =
√

θ(0, e2iπ/3)4θ(0, 1 + τ)4 − θ(0, eiπ/3)4θ(0, τ)4.

There is a constant c ∼= 1.03... which seems to be a positive real
number, such that

θ(0, e2πi/3)4 = ce−iπ/6

θ(0, eiπ/3)4 = ceiπ/6.

Thus

f(τ) = c1/2
√

e11iπ/6(θ(0, 1 + τ)4 + e7iπ/6θ(0, τ)4.

36



The vector field
1

f(τ)

∂

∂w

on C×H is invariant under the action of Γ(2) by which
(
a b
c d

)
(w, τ) =

w
cτ+d

, aτ+b
cτ+d

), and defines a vector field on the bundle M−1 on
P1 \ {0, 1,∞} which has a simple pole on the fiber over one of
the two branching points of γ.

Since we denote the period map P1 → P1 by γ, then the comple-
ment of the singular fibers in our surface S is the total space
of γ∗M−1, and our fiberwise vector field lifts to a vector field
having a simple pole on one fiber.

Two basic periods for the elliptic curve over a point λ ∈ C \
{0, 1} ⊂ P1 \ {0, 1,∞} are then obtained as follows: starting
with λ we evaluate γ(λ) = 1−λ2

1−2λ
. Then

η(τ) =

∫ 0

−∞
dz√

z(z−1)(z−γ(λ(τ)))∫∞
1

dz√
z(z−1)(z−γ(λ(τ)))

.

Then our two basic periods are

f(τ), η(τ)f(τ).
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V.3. General vector fields

It is easiest to start with just the double cover, let’s call it D, of
P2 along L1 ∪ L2 ∪ L3 ∪ L4. Calling the double covering map π
we know that due to a nice and general property of logarithmic
one-forms,

ΩD(log(L1 ∪ L2 ∪ L3 ∪ L4) ∼= π∗ΩP2(log(L1 ∪ L2 ∪ L3 ∪ L4).

Here the Li on the left side of the equation refer to the reduced
divisors which support the pullback of the Li as a divisor on P2.

As we may do with any branched cover, we can use the identi-
fication to explicitly construct one-forms on the cover. We con-
struct the diagram with exact rows

0 → ΩD → ΩD(log(L1 + ...+ L4)) → ⊕4
i=1OLi

→ 0
↑ ↑∼= ↑

0 → π∗ΩP2 → π∗ΩP2(log(L1 + ...+ L4)) → ⊕4
i=1π

∗OLi
→ 0

.

This shows that ΩD is isomorphic to the kernel of the composite

π∗ΩP2(log(L1 + ...+ L4) → ⊕4
i=1π

∗OLi
→ ⊕4

i=1OLi
.

We should now be able to analyze this very precisely. A crude
first statement of the corresponding principle for vector fields
is that the general holomorphic vector fields on P2 which pre-
serve some subset of L1, L2, L3, L4 should lift to a meromorphic
vector field on the double cover with simple pole on whichever
of the Li are not preserved in P2.
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V.4. Transformation of a fiberwise vector-field

The vector field z ∂
∂z

on affine space induces a well-defined vec-
tor field on P2 and is equal to that induced by −x ∂

∂x
− y ∂

∂y
. The

corresponding vector field on F1 has a simple zero on the ex-
ceptional line and the line L4 defined by the equation z = 0. It
lifts to the double cover having a simple zero on each of the two
disjoint exceptional lines E1, E2, and just a simple zero on the
L4, but acquires simple poles on the lines L1, L2, L3. The divisor
E1+E2−L1−L2−L3+L4 restricts to a principal divisor on each
elliptic curve fiber, but without restricting, it is equivalent to
minus the class of a fiber.

We can adjust the divisor within its linear equivalence class by
multiplying our vector field by a rational function on our ellip-
tic surface so that the vector field will have just a simple pole
on one smooth fiber. By the usual conventions, which involve a
factor of two relating half-periods with periods, one defines

g2 = −4(e1e2 + e2e3 + e1e3)

g3 = 4e1e2e3.

Once we multiply by
√

4− g2
z2

− g3
z3

=
√

(z−e1)(z−e2)(z−e3)
(z−e4)3

the re-
sulting vector field will have divisor E1+E2−2L4 and for num-
bers a, b if we multiply by z

ax+by
it will have divisor minus the

inverse image of [−b : a].

What we have done, then, is to start with the vector field on
P2 which is induced by the vector field on affine space −x ∂

∂x
−

y ∂
∂y
, and let it act on the affine part of P2 with coordinates x

z
, y
z
.

It acts with eigenvalue −1 on each coordinate, so we would
describe it in these coordinates as

−x

z

∂

∂ x
z

− y

z

∂

∂ y
z

.

When we multiply by our ratio z
ax+by

and then by −1
2

√
4− g2

z2
− g3

z3

we obtain
1

2

√
4− g2

z2
− g3

z3
(

x

ax+ by

∂

∂ x
z

+
y

ax+ by

∂

∂ y
z

).
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If our choice of order of vanishing on the ‘boundary’ divisor is
correct, this should lift to a vector field on our elliptic surface
which has six nodes, having a simple pole on the fiber of one of
the two connected irreducible components of the branching of
the quadratic map induced by the period map.

Now let’s construct a vector field on the copy of P2 which is
the codomain of our rational map. Starting with the modular
forms in the variable η now (which we’ll later identify with η(τ)
using the function with the same name)

u =
π2

3
θ(0, η)4

v =
π2

3
θ(0, 1 + η)4.

Take (ν, η) as our coordinate function pair on C × H. For each
pair of numbers α, β not both zero, the vector field√

1

αu+ βv

∂

∂w

is invariant under Γ(2) and descends to a vector field on M−1

which is a line bundle over P1 \ {0, 1,∞},

As we showed in a previous section, with the choice of values

α = e7πi/6

β = e11πi/6

this vector field on the double cover has a simple pole on the
fiber over one of the two branched (and fixed) points of γ : P1 →
P1.

Let’s lift this vector field, viewed as a two-valued vector-field
on P2, through our birational map P2− → P2 and compare it to
the one we constructed already on the domain (in coordinates
x, y, z). Let’s then apply both our fiberwise vector fields to the
basic rational function field generators x

z
and y

z
. Applying the
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vector field transformed to the domain to the generator x
z

we
get

∂

∂w
(
x

z
) =

∂

∂w
(
π2

3

θ(0, τ)4

℘(w, τ)
)

=
−1

℘(w, τ)

√
4(℘(w, τ)− e1)(℘(w, τ)− e2)(℘(w, τ)− e3)

x

z

As for the occurrences of u, v in the coefficient, we look at how
the rational map relates u, v with x, y :

1

℘(ν, η)
u =

(−℘(w, τ) + x− 2y)(x2 − 2xy)

x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)

1

℘(ν, η)
v =

(−℘(w, τ) + x− 2y)(x2 − y2)

x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)
.

Adding α times the first equation with β times the second gives

1

℘(ν, η
(αu+ βv) =

(−℘(w, τ) + x− 2y)(α(x2 − 2xy) + β(x2 − y2))

x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)

Now the magic happens; the particular values we’re using for
α, β imply that the polynomial in the last factor of the numer-
ator is a perfect square, so

1

℘(ν, η)
(αu+ βv) =

(−℘(w, τ) + x− 2y)(e9πi/12x+ e17πi/12y)2

x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)

Solving for αu+βv and substituting the result as the denomina-
tor in the coefficient, we know now how to describe our deriva-
tion in the new coordinates. Applying it tox

z
gives

1√
αu+βv

∂
∂w

( x
z
) =

√√√√ x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)

℘(ν, η)(−℘(w, τ) + x − 2y)
·

1

e9πi/12x + e17πi/12y
·

−1

℘(w, τ)
·
√

4(℘(w, τ) − e1)(℘(w, τ) − e2)(℘(w, τ) − e3)
x

z

Factors of ℘(w, τ)− e3 cancel to −1 and we have
1√

αu+βv
∂
∂w

(x
z
) =√

− x3 − 6x2y + 4y3 + ℘(z, τ)(−x2 + 7xy − 7y2)

℘(ν, η)
· 1

e9πi/12x+ e17πi/12y
· −1

℘(w, τ)
·
√

4(℘(w, τ)− e1)(℘(w, τ)− e2)
x

z
.
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Putting in z for ℘(z, τ) and r for ℘(ν, η) this becomes
1√

αu+βv
∂
∂w

(x
z
) =

−
√

− x3 − 6x2y + 4y3 + z(−x2 + 7xy − 7y2)

r
· 1

e9πi/12x+ e17πi/12y
·
√

4(1− x

z
− y

z
)(1 + 2

x

z
− y

z
)
x

z
.

The same happens for y
z
. This vector field, which we obtained

by transforming the vector field on the other copy of P2, is
−
√

−z
z−x+2y

times the vector field we constructed here. In other
words, it has an additional zero on the line at infinity and an
additional pole on L3. This is very consistent with the fact that
the birational transformation contracts L3 to a point and sends
the line at infinity to L3.

And it does have a simple pole on the one line through [0 : 0 : 1]
in P2 defined by the equation e9π/12x+ e17π/12y = 0.

So that we have gone all the way from considering ∂
∂w

on C×H,
and multiplied by a coefficient to make it invariant, so we could
consder it to be a two-valued vector field on P2, then we trans-
formed this partially-defined analytic vector-field through the
birational transformation, and we see that after adjusting for
the extra zero due to the line at infinity mapping to L3, and
the addditional pole due to L3 being contracted, we arrive at a
vector field one our elliptic surface which double covers of the
F1 where it has no zeroes or poles except a single pole on one
smooth elliptic curve fiber.

It is a somewhat arbitrary series of transformations, visiting
partway through the Del Pezzo surface where the line L3 is
blown up at three points before it is contracted; but it does go
all the way from the analysis on C×H to the algebra of vector
fields on complete projective varieties.
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VI. Integral calculus on elliptic curves.
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VI.1 Expression of ℘(w, τ)dτ as a rational one-form

Consider M−1 as a line bundle on P1 \ {0, 1,∞}. The map

C×H → C2

(w, τ) 7→ (wθ(0, τ)2, wθ(0, 1 + τ)2)

contracts the zero section 0×H to a single point at the origin,
and it is invariant for ⟨T 2, ST 2S⟩ so it descends to a map

M−1 → C2

which contracts the zero section P1 \ {0, 1,∞} to a single point.

There is a corresponding map which contracts the zero-section
of the tensor square M−2, induced by

C×H → C2

(w, τ) 7→ (w2θ(0, τ)4, w2θ(0, 1 + τ)4).

This map
M−2 → C2

extends to a map whose domain is the full line bundle M−2 on
P1.

Up to isomorphism of (locally free rank one) coherent sheaves,
nothing changes if we append dτ to both coordinates, and then
each coordinate is w2 times a one-form on P1 with at most sim-
ple (=logarithmic) poles at 0, 1,∞. The factors θ(0, τ)4dτ and
θ(0, 1 + τ)4dτ as sections of the dual line bundle to M−2 can be
interpreted as functions M−2 → C.

We can compactify the image C2 by considering that P2 is noth-
ing but M2 and M−2 glued along the complement of their zero
sections by the antipodal map on the fibers (to result in the
scroll F1), then with the zero-section of M−2 contracted to a
point.

Another way of compactifying the image is to replace the factor
w2 by the periodic factor π2

3℘(w,τ)
. The meromorphic map

M−2 → C2
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(w, τ) 7→ (
π2θ(0, τ)4

3℘(w, τ)
,
π2θ(0, τ + 1)4

3℘(w, τ)
)

extends to
M−2 → P2

(w, τ) 7→ [
π2

3
θ(0, τ)3 :

π2

3
θ(0, 1 + τ)4 : ℘(w, τ)].

The restriction of M−2 to P1 \ {0, 1,∞} is a non-Galois cover of

(Z2 ⋊ ⟨T 2, ST 2S⟩)\(C×H)

and once the zero section is contracted, this embeds in the dou-
ble cover of P2 branched over L1, L2, L3, L4 as the complement
of the lift of L4 = V (z) union V (−2x+ y)∪ V (x− 2y)∪ V (x+ y).

Thus one component of the critical locus is deleted, and also
three lines are deleted which are asymptotic to the other three
components of the critical locus, as L1 = V (z + 2x − y), L2 =
V (z − x− y), and L3 = V (z − x+ 2y).

We obtain a different copy of M−2 on P1 \ {0, 1,∞} by pulling
back M−1 along the period map

γ : P1 → P1

[x : y] 7→ [x2 − 2xy : x2 − y2].

Although it did not matter in the previous section (since the
coefficient was homogeneous of degree zero), here, let’s change
our definition of x and y not to be rational one-forms on P1 with
at worst simple poles at 0, 1,∞, but, rather, we divide these by
dτ obtaining instead

x =
π2

3
θ(0, τ)4

y =
π2

3
θ(0, 1 + τ)4.

We can still interpret x and y as sections of O(1) (the coherent
sheaf structure is not affected by removing the symbol dτ ).
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Now, as before, the classical lambda function is

λ = 1− y

x
=

x− y

x
.

From the formulas

d log λ = iπθ(0, 1 + τ)4dτ

=
3

π
iydτ

and
d logλ =

x

x− y
(−d

y

x
)

=
y

y − x
(
x

y
d(

y

x
))

=
y

y − x
(
dy

y
− dx

x
),

eliminating d logλ gives

dτ =
π

3i

1

xy(y − x)
(xdy − ydx).

=
iπ

3

1

xy(x− y)
(xdy − ydx).

The expression xdy−ydx which we might more rigorously have
written x∇(y)− y∇(x) is a global section in the kernel of

OP1(1)⊗ P(OP1(1)) → OP1(2)

and is therefore a global section of OP1(2) ⊗ ΩP1 , a copy of the
trivial line bundle and therefore this is the uniquely deter-
mined global section up to a scalar multiple.

Multiplying by the coefficient converts it to a rational section of
OP1(−1)⊗ΩP1 . Therefore by multiplying by a linear form ax+by
we obtain a rational one-form.

Our equation is an identity that holds on H when x, y are in-
terpreted as merely being modular forms.
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In terms of our analytic parametrization, if we now instead
write

x(w, τ) =
π2

3℘(w, τ)
θ(0, τ)4

y(w, τ) =
π2

3℘(w, τ)
θ(0, 1 + τ)4

then the same formula will instead describe ℘(w, τ)dτ. Let’s
record this

℘(w, τ)dτ =
iπ

3xy(x− y)
(xdy − ydx).

Let’s state this

8. Theorem. The meromorphic one-form ℘(w, τ)dτ on C×H is
Z2 ⋊ ⟨T 2, ST 2S⟩-invariant for the action of degree -2. It is the
pullback of the same rational one-form on P2 whose restriction
to the affine (x, y) plane is

iπ

3xy(x− y)
(xdy − ydx).

Note that the one-form xdy− ydx has the property that for any
rational function f of x and y,

d(f(xdy − ydx)) = δ(f)dx ∧ dy.

where δ is the derivation coming from the Euler derivation
when we view x and y as sections of OP1(1), namely

δ = x
∂

∂x
+ y

∂

∂y
.

In this case the coefficient is ‘homogeneous of degree -3’ so
δ(f) = −3f we get rid of that denominator of 3. That is to say

∂

∂w
℘dw ∧ dτ = d(℘(w, τ)dτ)

= d
iπ

3xy(x− y)
(xdy − ydx)
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=
−3iπ

3xy(x− y)
dx ∧ dy

=
iπ

xy(x− y)
dx ∧ dy.

It makes sense to interject a particular calculation re-deriving
from this the factor of πθ(0, τ)2 in the periods of the classical
elliptic integral of the first kind. Because we know a set of
basic periods of the incomplete elliptic surface made with the
℘ function actually are 1, τ.

By our current conventions

x℘ =
π2

3
θ(0, τ)4, y℘ =

π2

3
θ(0, 1 + τ)4,

such that e1, e2, e3 and also x℘, y℘ are functions of τ alone and∫ ∞

e1

dT√
(T − e1)(T − e2)(T − e3)

= 1

∫ ∞

e2

dT√
(T − e1)(T − e2)(T − e3)

= τ

setting s = T−e1
3x℘

and calculating

ds√
s(s− 1)(s− λ)

=
√

3x℘
dT√

(T − e1)(T − e1 − 3x℘)(T − e1 − 3x℘λ)

=
√

3x℘
dT√

(T + 2x℘− y℘)(T + 2x℘− y℘− 3x℘)(T + 2x℘− y℘− 3x℘(1− y
x
))

=
√

3x℘
dT√

(T − e1)(T − e2)(T − e3)
.

which must then integrate to
√
3x℘ = πθ(0, τ)2 if integrated

from 1 to ∞ and to τπθ(0, τ)2 if integrated from 0 to ∞.
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VI.2 Geometric determination of the period lattice.

First consider only the ratio [u : v]. If we had written something
simpler

u = x2 − 2xy

v = x2 − y2

x(τ) =
π2

3
θ(0, τ)4

y(τ) =
π2

3
θ(0, 1 + τ)4

then we could have said

dη(τ) =
u(τ)

x(η(τ))

2πi

3

x2 − xy + y2

xy(x− y)(x+ y)(y − 2x)(x− 2y)
(xdy − ydx).

which also equals

v(τ)

y(η(τ))

2πi

3

x2 − xy + y2

xy(x− y)(x+ y)(y − 2x)(x− 2y)
(xdy − ydx).

In the first instance the numerator u(τ) would cancel the fac-
tors x(x − 2y) in the denominator, in the second instance the
numerator v(τ) would cancel the factors (x− y)(x+ y).

Elsewhere, when we write x or y we mean x(τ) or y(τ).

If we choose not to make any cancellations, the last factor has
zeroes on the two lines through [0 : 0 : 1] which meet L4 at the
two branching points of the period map, and poles on the six
lines through [0 : 0 : 1] which meet a crossing among L1, L2, L3, L4.

Because of the homogeneity of the expression xdy − ydx, the
product of all terms besides 1

x(η(τ))
is homogeneous of degree

zero, and is unaffected when we change our definition of x, y
by multiplying by an arbitrary function of w, τ ; and in the sec-
ond instance likewise for the product of all terms except 1

y(η(τ))
.

Therefore we have formulas for the invariant forms x(ν(w, τ), η(τ))dη(τ)
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and y(ν(w, τ), η(τ))dη(τ) as rational functions, even if we re-
sume the the correct definitions

x(w, τ) =
π2

3

θ(0, τ)4

℘(w, τ)

y(w, τ) =
π2

3

θ(0, 1 + τ)4

℘(w, τ)
,

giving
x(ν(w, τ), η(τ))℘(ν(w, τ), η(τ))dη(τ)

=
2πi(x(w, τ)2 − x(w, τ)y(w, τ) + y(w, τ)2)

3y(w, τ)(2x(w, τ)− y(w, τ))(x(w, τ)− y(w, τ))(x(w, τ) + y(w, τ))
(x(w, τ)dy(w, τ)−y(w, τ)dx(w, τ)),

y(ν(w, τ), η(τ))℘(ν(w, τ), η(τ))dη(τ)

=
2πi(x(w, τ)2 − x(w, τ)y(w, τ) + y(w τ)2)

3x(w, τ)y(w, τ)(x(w τ)− 2y(w, τ))(y(w, τ)− 2x(w, τ)))
(y(w, τ)dx(w, τ)−x(w, τ)dy(w, τ)).

The coefficients of dη do not really depend on ν, dividing by
these and integrating, the enticing formulas which result ex-
press a period ratio of the elliptic curve which double covers
the line through the point (x, y) in the affine plane, branched
on the lines L1, L2, L3, L4; there is a period lattice basis ω1, ω2

with ω1/ω2 = η(τ) and therefore

ω1

ω2

=

∫
2i

πθ(0, η(τ))4
x2 − xy + y2

y(2x− y)(x− y)(x+ y)
(xdy − ydx)

=

∫
2i

πθ(0, 1 + η(τ))4
x2 − xy + y2

xy(x− 2y)(y − 2x)
(xdy − ydx).

On each of the two parts of an open cover where θ(0, η(τ)) or
θ(0, 1 + η(τ)) is not zero, the period ratio of the double cover of
the line through a point (x, y) is determined now by the path
integral of a rational one-form with poles on four of the six
lines through [0 : 0 : 1] which meet an intersection of two of
L1, L2, L3, L4 and with zeroes on the two lines through [0 : 0 : 1]
which meet L4 at a branching point of the period map.

While the period ratio only depends on the ratio [x : y], we’ve
put in a radial dependence using theta functions, and have
multiplicatively separated out a rational one-form on each part
of the open cover.

50



Let’s test this formula approximately. In this code some def-
initions are inessentially different, so that what we call η(τ)
needs to be spelled out as a different composite as η(γ(λ(τ))).
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VI.3 Variable of integration for L(s, χ, τ).

In the first instance, we can use y
x

as a variable of integration.
From

y =
π2θ(0, 1 + τ)4

3℘(w, τ)

we can rewrite

℘(w, τ)dτ =
π2θ(0, 1 + τ)4

3y
dτ

and then

dτ =
3y

π2θ(0, 1 + τ)4
1

xy(y − x)
(xdy − ydx)

Then from d log(λ
q
) = iπ(θ(0, 1 + τ)4 − 1)

L(s, χ, τ0) = − 1

Γ(s)π1−s

∫ τ0

0

(
τ

i
)s−1iπ(θ(0, τ)4 − 1)dτ

=
1

Γ(s)(−iπ)s−1

∫ τ0

0

τ s−1(1− 1

θ(0, 1 + τ)4
)(

1

1− y
x

)d
y

x
.

The upper limit of integration refers to the value of y
x

which is
1− λ(τ0).

A more direct way of deriving the same formula is from the
rule

d log(
λ

q
) = (1− 1

θ(0, 1 + τ)4
)d log(λ).

Let’s rework this to remove the theta function of τ from the
integrand.
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Since when we constrain w = τ
2

we have

0 =
d

dτ
(−2x+ y),

when we constrain w = 1
2

we have

0 =
d

dτ
(x+ y)

and when we constrain w = 1+τ
2

we have

0 =
d

dτ
(x− 2y)

then with each of these constraints, the path formed by (x(w, τ), y(w, τ))
as (w, τ) ranges along the corresponding real line in C is a
straight real line in C2.
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The three lifts of the boundary of our basic ideal triangle (half-
fundamental domain) with ideal vertices 0, 1, i∞ map to the
real points of the lines L1, L2, L3.

If we write the separate variables of integration as dx and dy,
on the non-compactifiable elliptic surface we can write

−L(s, χ, τ)(−iπ)1−sΓ(s) =

∫ τ

0

ts−1iπ(
3

π2

℘(1
2
, t)− ℘(1+t

2
, t)

3
− 1)dt

so

L(s, χ, τ) =
(−iπ)s−1

Γ(s)
(iπ

τ s

s
− i

π

∫ τ

0

ts−1P(
1

2
, t)dt+

i

π

∫ τ

0

ts−1P(
1 + t

2
, t)dt)

=
1

Γ(s)
(−(−iπτ)s

s
+

1

iπ

∫ τ

0

(−iπt)s−1P(
1

2
, t)dt− 1

iπ

∫ τ

0

(−iπt)s−1P(
1 + t

2
, t)dt)

= −(−iπτ)s

sΓ(s)
+

1

3Γ(s)

∫
(−iπt)s−1

xy(x− y)
(xdy − ydx)

along two arcs of a corresponding path. If we use a purely
imaginary τ near i∞ the path in C × H goes along two of the
irreducible components of the branching locus: first from from
(w, t) ranging from (1+τ

2
, τ) to (1

2
, 0) while [x : y : z] goes along

L3 from a point near [−1 : −1 : 0] through the ‘point at infinity
’ at [−2 : 1 : 0] on to [1 : 0 : 1] and then on the second arc
(w, t) ranges from (1

2
, 0) to (1

2
, τ) while [x : y : z] goes in L2 from

[1 : 0 : 1] to a point near [1
2
: 1
2
: 1].
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We should eventually perform the same analysis with u, v play-
ing the role of x, y and with ν, η playing the role of w, τ. It is η
which is the actual period ratio for the elliptic curves which
double cover lines through [0 : 0 : 1] branching on the intersec-
tions with L1, L2, L3, L4 – and these are merely inverse images
of the same projective lines in a double cover of all of P2, and the
relation between x, y, z and u, v, r is via a rational map which
factors through a singular del Pezzo surface where L3 becomes
contracted to a point and L4 maps to L3.

In the meantime, as a reality check, we should spot-check that
what we’re saying makes sense. Let’s evaulate L(s, χ) at s =
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.3 + .3i, say. We have

L(s, χ) = −8ζ(s)ζ(s−1)4−s(2−2s)(4−2s) = −1.46167−0.519004i,

approximately. Whereas

−1

Γ(s)

∫ i∞

0

(−iπτ)s−1(
1

iπ
℘(

1 + τ

2
, τ)− 1

iπ
℘(

1

2
, τ)− iπ)dτ

gives the same answer. We find L(s, χ, τ) for, say τ = .9i, by
replacing the upper limit by .9i. It is −1.43196− 0.43822i. If we
also replace the lower limit by 0.1i we get −0.641538−0.684334i.
We express this as the sum of three parts. Replacing ℘(w, τ)dτ

by iπ
3

xdy−ydx
xy(x−y)

the first part is the integral of (−iπτ)s−1

3Γ(s)
xdy−ydx
xy(x−y)

along
the path parametrized

(x, y) = (
π2θ(0, τ)4

3℘(1
2
, τ)

,
π2θ(0, 1 + τ)4

3℘(1
2
, τ)

)

for τ ranging from .1i to .9i. Approximating this as a finite sum
of 10000 parts, it is approximately 5.30538+ 4.02164I. The next
part is the is the path integral of (−iπτ)s−1

3Γ(s)
xdy−ydx
xy(x−y)

along the path
parametrized by

(x, y) = (
π2θ(0, τ)4

3℘(1+τ
2
, τ)

,
π2θ(0, 1 + τ)4

3℘(1+τ
2
, τ)

)

for τ ranging from .1i to .9i. This is approximately −5.23797 −
3.89999i. The third part is just an evaluation of the minus re-
maining definite integral, it is (−iπ(.1i))s

sΓ(s)
− (−iπ(.9i))s

s∗Γ(s) which is ap-
proximately −0.708885−0.805857i, the three parts add to −0.641473−
0.68421i which is correct to around three decimal places.

We have not yet looked at convergence of the path integrals
when considered separately though this will be easy. The greater
challenge is to understand the transform through our rational
map which is related to the period mapping, so we may use
η(τ) in place of τ. This may also finally allow thinking of a sim-
pler function L(s, χ, ν, η) which we could also parametrize as
L(s, χ, u, v) under the relation between analytic and rational
parametrizations.
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The comparison between the two compactifications is likely to
be confusing, so we should slow down a little. Going back to
the diagram a few pages ago, which is displayed beneath the
words “... with each of these constraints...” we see a map from
the total space of the line bundle on P1 \ {0, 1,∞} which is a
non-Galois cover of the non-compactified surface. The non-
compactified surface is a bundle of smooth elliptic curves po-
larized with a Z/(2Z) homology basis such that each fiber rep-
resents each polarized isomorphism type exactly once.

Regarding the line bundle, its total space is C×H and the map
to P2, in variables (ν, η), is given

(ν, η) 7→ [π2θ(0, η)4 : π2θ(0, 1 + η)4 : 3℘(ν, η)].

The map contracts the zero-section described by the equation
ν = 0 to the point [x : y : z] = [0 : 0 : 1] and the map branches of
order two at three lines in the domain ν = 1

2
, ν = τ

2
, ν = 1+τ

2
.

The way the total space of the line bundle is a non-Galois cover
of the smooth elliptic surface is that the quotients of C × H by
the action of Z2 ⋊ Γ(2) describes the elliptic surface, while the
quotient only by 0 × Γ(2) describes the total space of the line
bundle. However the group action of Z2⋊ 1 does not descend to
any well-defined group action of Z2 on the line bundle.

The branching locus of the map from the line bundle to P2 maps
locally isomorphically to the branching locus of the map from
the elliptic surface to P2. Thus it is the union of the branching
in each fiber where we fix τ to be a constant, and it occurs at
the values ν = 0, 1

2
, τ
2
, 1+τ

2
. This occurs at the three lines we’ve

described, and the zero section which is contracted in the map
to P2. That is to say, if we represent our smooth non-compact
surface as a bundle of elliptic curves, the branching of the map
to P2 occurs at the four sections where ν is the chosen zero
section or one of the points of order two in its elliptic curve
fiber.
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We can make a naive partial compactification of C × H which
the disjoint union C × (H ∪ P1(Z)). Note that P1(Z) = P1(Q).
To topologize the disjoint union we first consider P1(Q) to be
the rational points of the real line boundary of H in C together
with i∞, and start with the topology generated by the induced
topology from C. Then we adjoin new open sets consisting of H
union each single point of P1(Z), and let these generate a finer
topology. Now the induced topology on the subset P1(Z) has
been made discrete in a universal way, even while the points of
that set are not isolated in the larger set.

We extend the map by continuity to the map

C×H → P2

such that the line of points (ν, 0) contracts to the point [1 : 0 : 1],
the line (ν, 1) contracts to the point [0 : 1 : 1] and for each
number ν the point of the line (ν, i∞) maps to the point [π2 :
π2 : ℘(ν, i∞)].

Here ℘(ν, i∞) refers to limτ→i∞℘(ν, τ) and we will have to de-
scribe this limiting function. Our expression by theta functions
describes an indeterminate limit requiring L’Hopital’s rule, there
will be a more direct way of describing the limiting function.

The group action of the subgrop 0⋊ Γ(2) on C×H is generated
by the two transformations (w, τ) 7→ (w, τ + 2) and (w, τ) 7→
( w
2τ+1

, τ
2τ−1

. The first of these extends continuously to an auto-
morphism which pointwise fixes C × {i∞} acts freely on the
union of all other boundary lines. The second extends contin-
uously to an automorphism which acts freely on all boundary
lines besides C× {0} and fixes that one pointwise. In this way
we have extended the action of 0⋊ Γ(2) to a partial compactifi-
cation of the line bundle which also has a line fiber over each of
0, 1,∞ ∈ P1. The set of boundary lines has three orbits. It is a
question, for now, whether the quotient by the group action is
the total space of a line bundle over P1 with lines corresponding
to the three orbits lying over 0, 1,∞. The subset

{ 1

2πθ(0, τ)2
, τ) : τ ∈ H} ⊂ C×H
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is invariant under 0 ⋊ Γ(2) and descends to a section of our
line bundle over P1 \{0, 1,∞}. We need to consider whether our
compactification of this line bundle is actually a holomorphic
line bundle over P1 and, if so, whether this section extends to a
meromorphic section of the line bundle over P1 \ {0, 1,∞}. The
tensor square of the line bundle over P1 \ {0, 1,∞} has section
sheaf isomorphic with vector fields on P1 which fix 0, 1,∞. This
is isomorphic with the restriction of O(−1) to the complement
of {0, 1,∞}. However, O(−1) is not a tensor square.

Before we take the tensor square, we can think of our line bun-
dle as being M−1, and as we explained in section V.I the sheaf of
fiberwise vector fields on M−1 once restricted to the zero section
is isomorphic with the sheaf of sections of M−1. If we wish to
make the isomorphism explicit, we can think that a fiberwise
tangent vector at the zero point of a fiber describes a point in
that fiber, which would be the result of flowing along the vector-
field for one unit of time. Two rough intuitive features of the
subsequent analysis are that lifting through the period map
doubles the degree, and the tensor square of fiberwise vector
fields restricted to the zero section is isomorphic with vector
fields along the zero section fixing 0, 1,∞.

Our algebriac compactification was done by a corresponding
degree-two rational transformation of the projective plane. The
plane which is shown in the diagram, coordinatized on the page
by x and y, which we shall rename as u and v, rationally rep-
resents codomain of this transformation. We will use x, y for
variables in the domain. The transformation maps the line at
infinity to the line L3 whose image in the (u, v) plane is defined
by the equation u − 2v = 1, and it maps the line L3 in the do-
main which is defined by the equation x − 2y = 1 to the single
point [0 : 0 : 1].

Here is a drawing of particular exceptional lines in the surface
that results when we completely resolve the ambiguities of the
rational map
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Under the degree-two rational map, each of the red arcs comes
from a single point in the domain (the point is given as a label
of each red arc) while each blue arcs maps to a single point
in the codomain. Thus, the blue arc connecting the red line
labelled [0 : 0 : 1] with the red line labelled [2 : 1 : 0] corresponds
to the actual line between the points with those [u : v : w]
coordiantes in the domain, but maps to a single point in the
codomain. Three of the three blue lines are lines through [0 :
0 : 1] in the domain and the fourth one is L3 itself. The red
line labelled [0 : 0 : 1] in the diagram maps to the line L3 in
the codomain which is disjoint from the image of the blue line
labelled L3.

In terms of analytic functions, the fact that the line ν = 1
2

maps
to the line L2, corresponds to an analytical identity

℘(
1

2
, η) =

π2

3
(θ(0, η)4 + θ(0, 1 + η)4)

and similarly for the other two branching lines. The relation
between the naive compactification and the Kahler compact-
ification will comprise a substantial extension of this type of
analytical coincidence beyond just the branching lines.
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VI.4 Integration by substitution.

If p(t) gives a path in a manifold, starting at time 0 (and we
may consider time to be a complex holomorphic entity), and if
a flow is given on the manifold, whose corresponding operator
on functions is the derivation δ, then as long as the path p is
an integral curve of the flow, parametrized accordingly, we may
explicitly calculate for each complex number c∫ c

0

δ(f)(p(t))dt =

∫ c

0

df

dt
(p(t))dt

=

∫ c

0

df(p(t)) = f(p(c))− f(p(0)).

And we can continue the analysis

= (ecδ(f)− f))(p(0)).

The element cδ belongs to the Lie algebra, and knowing how
its exponential acts on f allows the calculation of the original
integral of the real valued function of t.

A variant of this analysis is the following:∫ c

0

df(p(t))

δ(f)(p(t))
=

∫ c

0

δ(f)(p(t))

δ(f)(p(t))
dt

=

∫ c

0

dt = c.

It is this second variant which explains why elliptic integrals
calculate periods in the lattice in the Lie algebra. Starting with
a one-form of the type dz

g(z)
one considers the derivation δ such

that δ(z) = g(z). In other words, so that the function g(z) is the
contraction iδ(dz) of the one-form dz which is in the numerator.
Then one allows the path p(t) to form itself starting from a
point p(0), using the exponential formula if one wishes to be
explicit; and the integral of dz

g(z)
along this particular path has

the property that the integral from p(0) to p(t) is just t itself for
all values of t.

If p(c) = p(0), the value of c is a period of dz
g(z)

, and (ecδ(g) −
g)(p(0)) = 0.
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We can write the one-form related to Riemann’s hypothesis as
dλ
q

λτ1−s

q

or, the one which is slightly more directly related, writing u =

−iτ, is
dλ
q

λu1−s

q

and so we can try to choose δ such that

δ(
λ

q
) =

λ

q
u1−s.

Given any path p(t) in the upper half plane, say, for t ranging
from 0 to 1, we determine values of u along the path by solving
the ordinary differential equation

d

dt
u(p(t)) =

d
dt
p(t)

u(p(t))s−1iπ(θ(0, 1 + iu(p(t)))4 − 1)
.

Then Writing a = p(0) and b = p(1), in terms of the modular L
series

−πs−1

Γ(s)
(L(s, χ, iu(b))− L(s, χ, iu(a)))

=

∫ 1

0

u(p(t))s−1iπ(θ(0, 1 + iu(p(t)))4 − 1)
d

dt
u(p(t))dt

=

∫ 1

0

d

dt
p(t)dt = b− a.

Now choose instead an arbitrary point ie in the upper half
plane (so e has positive real part). Choose a smooth path p
with endpoints p(0) = 0, p(1) = πs−1

Γ(s)
L(s, χ, ie). Solve the differ-

ential equation above with u(p(0)) = e, and let b = u(p(1)). We
have

−πs−1

Γ(s)
(L(s, χ, ib)− L(s, χ, ie)) =

πs−1

Γ(s)
L(s, χ, ie)

and therefore
L(s, χ, ib) = 0.
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The point τ = iu(b) is then a zero of L(s, χ, τ). Note we do not
assume u to be real. Thus

9. Observation. For each point ie in the upper half plane and
each smooth real path p connecting 0 to

πs−1

Γ(s)
L(s, χ, ie),

a solution u of the differential equation above with u(p(0)) = e,
if it exists, satisfies that the number τ = iu(p(1)) is a zero of
L(s, χ, τ).

10. Example. Take s = .4 + .2i, e = 1, and p(t) = (1 −
t)e + tπ

s−1

Γ(s)
L(s, χ, ie) = (1 − t) · 1 + t · (−.2057 + .1987i). Setting

u(p(0)) = u(0) = e and applying the differential equation gives
τ = u(p(1)) = −.4142 + .1888i, and for this value of τ we have
L(s, χ, τ) = 0.

As we vary s we would see the position of τ changing.

11. Remark. The zeroes of L(s, χ, τ) which tend to the ideal
point τ = i∞ as s varies are those which correspond with zeroes
of Riemann’s zeta function.

Since we’re restricting the value of s to have real part between
zero and 1, the coefficient in the function

H → C

τ 7→ −π1−s

Γ(s)
L(s, χ, τ)

is just a constant.

12. Observation. As a function of τ L(s, χ, τ) is unbranched
but not proper.

It is unbranched because θ(1/2, τ) = θ(0, 1 + τ) does not take
the value 0, 1, i,−i for any value of τ. Given this, then it is not
proper because H is not conformally equivalent to C.
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VI.5. Deformation of T.

This opens the likelihood that it is almost certaintly not not
single-valued; i.e., not an embedding. The choice of path p of
‘complex times’ is essential choice leading to all the possible
solutions of L(s, χ, τ) = 0 starting with any one initial nonzero
value.

An example shows it is not single valued. Fix s = .4 + .7i,
chosen at random; this small rectangle in the τ plane overlaps
itself under the mapping. Lines of constant imaginary value
tend to a circle near the black arc as the imaginary coordinate
tends to zero, and to a single point, which is the value L(s, χ) =
L(s, χ, i∞), as the imaginary coordinate tends to infinity.

This raises the question whether there is a neighbourhood U of
the ideal point i∞ in the upper half-plane, which is invariant
under the action of an automorphism Ts which is a deformation
of the automorphism T : τ 7→ τ +2 in the case when s = 1, such
that for all τ ∈ U we have

L(s, χ, τ) = L(s, χ, Ts(τ)).
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The specific way an infinite set of nearby solutions might arise,
if Riemann’s ζ(s) ̸= 0 but is near zero, for 0 < Re(s) < 1, is
that L(s, χ, i∞) = L(s, χ) would be near zero so the open set
U should contain a zero of L(s, χ, ), and therefore that the
infinite cyclic orbit of this zero under the action of Ts would
produce an infinite set of zeroes. That is to say, we might define
a holomorphic isomorphism ηs in a neighbourhood of the ideal
point by the rule

eiπηs(τ) = L(s, χ, τ)− L(s, χ),

From invariance of the exponential map we’d have ηs(Ts(τ)) =
ηs(τ) + 2. Remembering the ordinary transformation T such
that T (τ) = τ + 2 we would have a formula for Ts as the conju-
gate

Ts = η−1
s Tηs.

where
ηs(τ) =

1

iπ
(log(L(s, χ, τ)− L(s, χ)).

As s approaches 1, our deformation ηs approaches the identity,
and Ts approaches T itself, which is the transformation τ 7→
τ + 2 of H.
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