
Short course about Lie groups

This is the outline of a short course about Lie groups. It includes
discussions with Alex Suciu.

In the process of classifying them, people like Cartan decided that
since each Lie group has a normal series with simple quotient groups,
one should focus firstly on simple Lie groups.

Also, there are reasons for restricting attention to compact Lie
groups. For example, any fiber bundle whose structural group is
a Lie group also admits as a structural group a maximal compact
subgroup of it.

Finally, it makes sense to restrict attention to connected Lie groups.

Thus, an interesting part of the theory is the theory of compact,
connected, simple Lie groups. However, it would not be correct to
think that this subcategory has any intrinsic meaning, for instance,
there should be no reason for people who use Lie groups to think
that they should particularly be interested in the compact, simple,
connected ones. It is only our choice in understanding the theory to
choose this particular type.

So let G be a compact, connected, simple Lie group (over the real
numbers). All the maximal tori in G are conjugate, and the cosets
of any particular maximal torus form an interesting manifold.

In fact, this manifold has a natural structure of a complex projective
variety T . It is the variety of Borel subgroups of the complexified
Lie algebra.

This is a great advertisement for the theory of complex projective
varieties, that starting with any simple compact connected real Lie
group, we obtain one as cosets of a torus. The dimension as a
complex projective variety is half the dimension as a real manifold,
and all the very interesting and restrictive structure of the theory
of complex projective varieties is there. For example, starting with
the group of rotations of three space about a point, we obtain in
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this way the Riemann sphere.

It is a familiar fact that rotations of three dimensional space about
a point are the same as rotations of a sphere, and here we have
realized1 as a subgroup of the holomorphic automorphism group of
a projective variety; as it happens the most elementary projective
variety, the projective line itself.

As the next simplification, one decides that one is actually more
interested in the full (connected) holomorphic automorphism group
of this projective variety T . It is sometimes called a ‘generalized flag
variety.’ And the group is nothing but the complexification of the
original compact Lie group, if it had been viewed as a real algebraic
group. It is a simple complex Lie group.

When one speaks of a ‘rational representation’ of such a group, one
means a morphism to the automorphism group of a complex vector
space. There is no indeterminacy allowed, and the term ‘polynomial
representation’ is sometimes meant to refer to a representation which
has some special property with respect to matrix entries, we shall
not use either term but merely speak of a ‘representation’ to mean
an action on a vector space coming from a morphism.

All the irreducible representations of the (connected) holomorphic
automorphism group G of T arise in a manner that is reminiscent
of thinking of wave functions. They arise by extending the group
action to a line bundle, and considering the group action on the
vector space of global sections. One way of making such a line
bundle with an action is to notice that the stabilizer subgroup Gt

of each point t ∈ T is a Borel subgroup of G. Then for each choice
of t and each finite dimensional representation V of Gt there is a
unique vector bundle with extended action whose sections on an
open subset U ⊂ T whose inverse image in G is the subset W are
the holomorphic functions f : W → V such that f(gt) = gf(t)
whenever gt = t.

1Actually, a lesson learned over many pages in chemistry.pdf, the coarse structure of spec-
tral lines of atoms does not rely on an identification of the double cover of the rotation group
with any subgroup of the automorphisms of the sphere, rather recognize a semidirect product
of both, and the fine structure invariant spaces of solutions for a diagonal subgroup
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The choice of t is inessential here, it does not affect the isomorphism
type of the representation of course. In the case of one-dimensional
representations of Gt, these are merely one dimensional representa-
tions of the semisimple quotient group, the maximal torus of G. Via
the Chern class map, we get a function from the character group
of the maximal torus to H2(T,Z) and this can be proved to be an
isomorphism. Moreover it can be shown that the Chow ring of T is
discrete, it is isomorphic to the cohomology algebra.

What this means then is that every abstract line bundle with ex-
tended G action comes from a unique representation of the maxi-
mal torus, and that forgetting the G action never makes two non-
isomorphic line bundles become isomorphic.

At this point one sees four theories nicely coinciding: the (what is
called ‘rational’) representation theory of Lie groups, the theory of
the integer cohomology ring of T, and the theory of algebraic cycles
(Chow ring) of T

In the case of rotations of three space, recall that we decided we are
more interested in the group G of holomorphic automorphisms of
T, now the projective line. Then one and the same infinite group
can be viewed as H2(T,Z), the equivalence algebraic cycles on the
projective line (the Picard group), and the isomorphism types of
finite dimensional irreducible representations of G.

If we knew that the integer cohomology algebra of T were generated
in degree two, we would have expressions for all the cohomology
classes as polynomials in the one dimensional representations of the
maximal torus of G.

Althoough T is called a ‘generalized flag variety,’ it really only gener-
alizes the saturated flag varieties; yet it maps onto any non-saturated
flag variety. If we let B be a Borel subgroup of G, then there
are finitely many parabolic subgroups P of G containing B, and
T = G/B maps onto G/P for each choice of P. Thus in the case of
special linear groups, T maps onto the Grassmannian varieties, and
the cohomology classes of Grassmannian varieties, which are known
as the universal Chern classes, then are contained in the cohomology
algebra of T.
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Analagous to the way people sometimes use the ‘splitting principle’
in the theory of characteristic classes, it is very useful to choose a
better variety T ′ mapping onto T so that H2(T,Z) → H2(T ′,Z)
is an isomorphism, while the cohomology algebra of T ′ really is
generated in degree two. Then this does allow us to express any
element not only in the Chow ring of T but also in case of the
special linear groups, any universal Chern class, as a polynomial in
the one dimensional representations of the maximal torus.

That is, the theory of ‘Chern roots’ is sometimes interpreted as
only a virtual theory, not an actual theory. Yet, we can embed the
cohomology algebra of T into a larger ring that really is generated
in lowest nontrivial degree, and such calculations are not virtual at
all, they can be visualized as actual intersections of algebraic cycles.

The construction of T ′ is called by Demazure the ‘Bott Samelson’
construction, and I’ll explain what this is.

Before leaving our discussion of T, it makes sense to pause a minute
and mention however the notion of the ‘root system’ which often
occurs in discussions of simple groups. This is the ‘dual fan’ of a
toric variety (a compact projective variety with T action) naturally
associated to G, and also it makes sense to relate the maps T =
G/B → G/P to blowing down in a larger variety. We’ll return to
these later.

Let’s now leave the discussion of T and go to the discussion of the
better variety T ′.

It is possible to represent the Lie algebra of G by matrices such that
the direct sum of upper triangular, lower triangular, and diagonal
matrices induces a decomposition of the Lie algebra of G into parts
N = N+, N−, H, and note that H +N+ is the Lie algebra of a Borel
subgroup B = B+ while H +N− is the Lie algebra of another Borel
subgroup B−. So choose t ∈ T so that B− = Gt. Then the point t
is a fixed point for the vector fields belonging to N− and H.
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The quotient of N modulo its radical decomposes into one dimen-
sional representations of the maximal torus fixing t (the one whose
Lie algebra is H). These are sometimes indexed by the simple re-
flections, elements of the normalizer of that torus modulo the torus
which transform each representation to its inverse.

If one denotes these basic reflections s1, ..., sr then one can encode
by words in the free group generated by the si the result of expo-
nentiating the corresponding vector fields in a particular order and
taking the closure.

Thus in SL3 one denotes by s1 the projective line which results by
exponentiating t using the vector field belonging to the one dimen-
sional representation sent to its inverse under s1, and s1s2s1 denotes
the result of exponentiating in this direction some (complex) amount
of time, then in the s2 direction some amount of time, then again
in the s1 direction.

There are two ways of thinking about this. Just as when we expo-
nentiate a simple Lie algebra we can get either a simply connected
group or the same modulo any discrete central subgroup, here, when
we exponentiate, we can choose either to ignore, or not to ignore,
coincidences.

In the case of SL3 what I am referring to is the fact that if I expo-
nentiate for zero time in the s2 direction, in the variety described
by s1s2s1, then I am describing the subvariety s1s1. But exponenti-
ating in the s1 direction, stopping, and exponentiating some more,
describes only upon passing to the closure the projective line itself.

I can choose to work formally and view s1s1 as describing a copy of
P1 × P1, or I can insist that I want the two factors identified.

What this describes for SL3, is a map from a three dimensional
iterated P1 bundle to the three dimensional flag variety, the set of
lines and planes in three space subject to the incidence relation of
inclusion, defined by the single equation x1y1 + x2y2 + x3y3 = 0 in
P2 × P2.
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That is, it is possible to blow up a projective line in that variety to
obtain a three dimensional iterated P1 bundle.

We define T ′ by choosing any maximal length word in the Weyl
group (a word of maximal length in the free group whose image in
the Weyl group has the same length) and doing this construction.

We could also perform blowups of T to obtain T ′. A warning is that
the blowup while it can be done by blowing up a sheaf of ideals,
the subscheme of T defined by the ideals would be allowed to be
larger than the locus of indeterminacy of the inverse rational map.
For example if I blow up a projective line in T to a copy of P1 × P1

this may be done by blowing up a subscheme, but this subscheme
will have its inverse image being a divisor, and therefore will have
associated reduced subscheme larger than P1.

The underlying abelian group of the cohomology algebra of T ′ is
just an exterior algebra on H2(T,Z), and the multiplication law is
totally determined by the Cartan matrix of G together with the
iterated bundle structure.

In fact, the role of the Weyl reflections enters in a transparent and
natural way in its relation with the iterated bundle structure.

If we think that the projective line is the one point compactification
of the line which we obtain by exponentiating t in one of the basic
directions, it is simplest to exponentiate ‘all the way to infinity’
and to take the point at infinity for the starting point of the next
exponentiation. Then the Weyl reflection arises when we change
perspective and consider the point at infinity as the new starting
point. That is, there is a chain of projective lines in T with a
marked basepoint at the intersection of two of the lines. As we
move our attention along the chain of projective lines, step-by-step
the change of perspective interchanges what we thought of as the
point zero and the point infinity of the next and the next projective
lines.
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